2016年最新数学八年级跟踪训练《平行四边形的判定(二)》
一、填空题 1.如图,□ABCD中,CE=DF,则四边形ABEF是____________. 2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形. 3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出 ______个平行四边形. 4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出 ______个平行四边形. 5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______. 二、选择题 6.能判定一个四边形是平行四边形的条件是( ). (A)一组对边平行,另一组对边相等 (B)一组对边平行,一组对角互补 (C)一组对角相等,一组邻角互补 (D)一组对角相等,另一组对角互补 7.能判定四边形ABCD是平行四边形的题设是 ( ). (A)AD=BC,AB∥CD (B)∠A=∠B,∠C=∠D (C)AB=BC,AD=DC (D)AB∥CD,CD=AB 8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ). (A)1∶2∶3∶4 (B)1∶4∶2∶3 (C)1∶2∶2∶1 (D)1∶2∶1∶2 9.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ). (A)2个 (B)3个 (C)4个 (D)5个 10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ). (A)(1,-2) (B)(2,- 1) (C)(1,-3) (D)(2,-3) 11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ). (A)1条 (B)2条 (C)3条 (D)4条 综合、运用、诊断 一、解答题 12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可). (1)连结______; (2)猜想:______=______; (3)证明: 13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件) 证明: 14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值. 15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE. 求证:(1)△ACD≌△CBF; (2)四边形CDEF为平行四边形. 拓展、探究、思考 16.若一次函数y=2x-1和反比例函数的图象都经过点(1,1). (1)求反比例函数的解析式; (2)已知点A在第三象限,且同时在两个函数的图象上,利用图象求点A的坐标; (3)利用(2)的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标. 17.如图,点A(m,m+1),B(m+3,m-1)在反比例函数的图象上. (1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuer/477014.html
相关阅读:2016年最新数学八年级强化《反比例函数的图象与性质》