从全等到相似

编辑: 逍遥路 关键词: 八年级 来源: 高中学习网


第二十讲 飞跃-从全等到相似
全等三角形是相似三角形的相似比等于1的特殊情况,从全等到相似是 认识上的一个巨大飞跃,不但认识形式上有质的变化.而且思维方式也产生突变,相等是全等三角形的主旋律,在相似形的问题中出现的线段间的关系比全等形中的等量关系复杂,不仅有比例式,还有等积式、平方式、线段乘积的和、差、线段比的和差等.
通过寻找(或构造)相似三角形,用以计算或论证的方法,我们称为相似三角形法,在线段长度的计算、角相等的证明、比例线段的证明等方面有广泛的应用,是几何学中应用最广泛的方法之一.
熟悉以下形如“A型”、“X型”“子母型”等相似三角形.


例题求解
【例1】如图,△ABC中,∠ABC=60’°,点P是△ABC内一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB= .
(全国初中数学竞赛题)

思路点拨 PA、PB、PC分别是△ABP、△BCP的边,从判定这两个三角形的关系入手.
注 相似是几何中的一个概念,但相似性不仅表现在事物的几何形态上,而且还体现在事物的功能、结构、原理上.
类比推理也贯穿在物理学的全部发展过程中,著名物理学家麦克斯韦曾说:“借助类比,我试图以便利的形式提出研究电现象所必须的数学手段和公式.”
在新事物面前,人们往往习惯于把它们与原有的、熟 知的事物相比.这里蕴含的思想方法就是类比.
【例2】 a、b、c分别是△ABC的三边的长,且 ,则它的内角∠A、∠B的关系是( )
A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定
(全国初中数学联赛试题)
思路点拨 先化简已知等式,根据所得等式构造相应线段,通过全等或相似寻找角的关系.
【例3】 如图,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE×PF
(吉林省中考题)
思路点拨 由于BP、PE、PF在同一条直线上,所以必须通过作辅助线寻找等线段来转化问题.

【例4】 如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE) .
(1)△AEF与△EFC是否相似,若相似,证明你的结论,若不相似,请说明理由;
(2)设 ,是否存在这样的 值,使△AEF与△BFC相似?若存在,证明你的结论并求出 的值:若不存在,说明理由.
(重庆市中考题)

思路点拨 本例是一道存在性探索问题,对于(2),假设存在,则Rt△AEF与Rt△BFC中有一对锐角相等,怎样由边的比值得出角的关系?不妨从特殊角入手,逆推求出 的值.


【例5】 如图,△ABC和△AlBlC1均为正三角形,BC和B1C1的中点均为D.求证:AA1⊥CC1.
(重庆市竞赛题)


思路点拨 作出等边三角形最基本的辅助线,并延长AAl交CCl于E,寻找相似三角形,证明∠A=90°.
注 比例 线段(或等积式的)证明是几何问题中的常见题型.基本证法有:
(1)从相似三角形入手;
(2)利用平行截割定理.
有时需根据要证明的式子,过恰当的点作平行线,在具体证明过程中,常常要作等线段代换、等比代抉或等积代换,以促使问题的转化.
将问题置于几何问题的背景中探索,要综合运用几何代数知识,多角度思考尝试,需要注意的是,若题目没有指出具体的对应关系,结论常常具有不确定性,需要分类讨论.
学力训练
1.如图,由边长为1的25个小正方形组成的正方形网格上有一个△ABC,在网格上,画出一个与△ABC相似且面积最大的△A1BlC1,使它的三个顶点都落在小正方形的顶点上,则△A1BlC1的面积是 . (泰州市中考题)

2.如图,在△ABC中,AB=15cm,AC=12cm,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点C,那么CE= cm. (重庆市中考题)
3.如图,正方形ABCD的边长为2,AE=BE,MN=1,线段MN的两端点在CB、CD上滑动,当CM= 时,△AED与以M、N、C为顶点的三角 形相似.
(桂林市中考题)
4.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,有下列结论:①∠BAE=30°;②CE2=AB×CF;③CF= CD;④△ABE∽△AEF.其中正确结论的序号是 . (黄冈市中考题)
5.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于点E,则结论正确的是( )
A .△AEDt∽△ACD B.△AEB∽△ACD C.△BAE∽△ACE D.△AEC∽△DAC
(江苏省竞赛题)

6.如图,梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC⊥BD于P,若 ,
则 的值是( )
A. B. C. D. (2000年绍兴市中考题)
7.如图,将△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论错误的是( )
A.AE⊥AF B. EF:AF= C.AF2=FH×FE D.
(黑龙江省中考题)
8.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD= ,则△ABC的边长为( )
A.3 B.4 C.5 D. 6 (黑龙江省中考题)
9.已知:正方形的边长为1
(1)如图①,可以算出一个正方形的对角线长为 ,求两个正方形并排拼成的矩形的对角线 长,并猜想出n个正方形并排拼成的矩形的对角线长.
(2)根据图②,求证:△BCK∽△BED.
(3)由图③,在下列所给的三 个结论中,选出一个正确的结论加以证明:
①∠BEC+∠BDE=45°;②∠BEC+∠BED=45°;③∠BEC+∠DFE=45°.

10.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿AB以每秒4?的速度向点B运动;同时点Q从C点出发,沿CA以每秒3?的速度向A点运动,设运动的时间为x.
(1)当x为何值时,PQ∥BC?
(2)当 时,求 的值;
(3)△APQ能否与△C QB相似?若能,求出AP的长;若不能,请说明理由.
(金华市中考题)
11.如图,设P是等边△ABC的一边BC上的任意一点,连结AP,它的垂直平分线交AB、AC于M、N两点,求证:BP×PC=BM×CN. (安徽省竞赛题)


12.已知平行四边形ABCD中,过点B的直线顺次与AC、AD及CD的延长线相交于点E、
F、G,若BE=5,EF=2,则FG的长是 . ( “弘晟杯”上海市竞赛题)

13.如图,ABCD是正方形,E、F是AB、BC的中点,连结CC交DB、DF于G、H,则EG:GH:= . (重庆市竞赛题)
14.如图,在梯形ABCD中,AB∥CD,AB (“祖冲之杯”邀请赛试题)
15.已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为 ,那么两底的比为( )
A. B. C. D. (江苏省竞赛题)
16.如图,若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD×DC等于( )
A.6 B.7 C. 12 D.16
(TI杯全国初中数学竞赛试题)
17.如图,在△ABC中,D是边AC上一点,下面4种情况中,△ABD∽△ACB不一定成立的情况是( )
A.AD×BC=AB×BD B.AB2=AD×AC C.∠ABD=∠ACB D.AB×BC=AC×BD
(全国初中数学联赛题)
18.如图,正方形ABCD中,M为AD中点,以M为顶点作∠BMN=∠MBC,MN交CD于N,求证:DN=2NC.
19.如图,梯形ABCD中,AB∥CD,AB>CD,K、M分别是 AD、BC上的点,已知∠DAM=∠CBK,求证:∠DMA=∠CKB. (“祖冲之杯”邀请赛试题)


20.如图,△ABC中,∠ACB=2∠ABC,求证:AB2=AC2+AC×BC.
21.如图,AB是等腰直角三角形的斜边,若点M在边AC上,点N在边BC上,沿直线MN将△MCN翻折,使点C落在AB上,设其落点为点P.
(1)当点P是边AB的中点时,求证: ;
(2)当点P不是边AB的中点时, 是否仍然成立?请证明你的结论.
(2001年北京市宣武区中考题)

本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuer/54979.html

相关阅读:相似三角形的性质

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 4509422@qq.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷