2018年初三数学下阶段检测试卷(宜兴丁蜀区带答案)

编辑: 逍遥路 关键词: 九年级 来源: 高中学习网

丁蜀学区2018-2019学年度第二学期第一次模拟测试
初三数学
全卷满分130分,考试时间120分钟
出卷:?东中学初三数学备课组   审核:?东中学初三数学备课组
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.?5的倒数是(  )A.  B.±5 C.5 D.?
2.函数y= 中自变量x的取值范围是(  )A.x≠2 B.x≥2 C.x≤2 D.x>2
3.分式22-x可变形为 (   )A.22+x      B.-22+x      C.2x-2       D.-2x-2
4.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是      (    )
A.平均数           B.方差          C.中位数           D.众数
5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为             (    )
   A.6              B.-6             C.12             D.-12
6.下列图形中,是轴对称图形但不是中心称图形的是                          (   )
A.等边三角形     B.平行四 边形      C.矩形           D.圆
7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是        (   )
A.∠1=∠3  B.∠2+∠3=180°  C.∠2+∠4<180°  D.∠3+∠5=180°
(第7题)                          (第8题)
8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是          (    )
A.35°        B.140°          C.70°           D.70°或140°
9.如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于                                                         (    )

10.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于        (    )
A.3∶4        B. ∶      C. ∶        D. ∶
二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡相应的位置)
11.分解因式:2x2-4x=         .
12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为       元.
13.一次函数y=2x-6的图像与x轴的交点坐标为      .
14.命题“全等三角形的面积相等”的逆命题是      命题.(填“真”或“假”)
15.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD的长等于      .
              
(第15题)                        (第16题)
16.如图,□ ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于       .
17.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为     .
 
(第17题)                         (第18题)
18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于     .

三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(本题满分8分)计算:
 (1) ;    (2)(x+1)2-(x+2)(x-2).
 

20.(8分)(1)解方程: = .(2)解不等式组:

 

21.(本题满分6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE,求证:MD=ME.

22.(本题满分8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达               (    )
A.从不        B.很少      C.有时     D.常常     E.总是
答 题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.


 
 根据以上信息,解答下列问题:
(1)该区共有         名初二年级的学生参加了本次问卷调查;
(2)请把这幅条形统计图补充完整;
(3)在扇形统计图中,“总是”的圆心角为        .(精确到度)
23.(本题满分8分)
(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是       (请直接写出结果).

24.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC
(1)线段BC的长等于     ;
(2)请在图中按下列要求逐一操作,并回答问题:
①以点     为圆心,以线段     的长为半径画弧,与射线BA交于点D,使线段OD的长等于
②连OD,在OD上画出点P,使OP的长等于 ,
请写出画法,并说明理由.

25.(本题满分8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?


26.(本题满分10分)如图,直线x=-4与x轴交于E,一开口向上的抛物线过原点O交线段OE于A,交直线x=-4于B.过B且平行于x轴的直线与抛物线交于C,直线OC交直线AB于D,且AD:BD=1:3.
(1)求点A的坐标;    (2)若△OBC是等腰三角形,求此抛物线的函数关系式.
 
27.(本题满分10分)如图1,菱形ABCD中,∠A=600.点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出.
(1)求点Q运动的速度; (2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
 
28.(本题满分10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:1OM-1ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求S1S2的取值范围.


2018-2019学年度第二学期阶段性测试初三数学答案
一、选择题
1 2 3 4 5 6 7 8 9 10
D A D B A A D B D D

二、填空题
11 12 13 14 15 16 17 18
2x(x-2) 8. 2×109 (3,0) 假 8 4  5 


三、解答题
19.解:(1)原式=3?4+1=0;
(2)原式=x2+2x+1?x2+4=2x+5.
20.(1)由题意可得:5(x+2)=3(2x?1),解得:x=13,检验:当x=13时,(x+2)≠0,2x?1≠0,
故x=13是原方程的解;
(2)解①得:x>?1,解②得:x≤6,故不等式组的解集为:?1<x≤6.

21. 证明:△ABC中,
∵AB=AC,
∴∠DBM=∠ECM,
∵M是BC的中点,
∴BM=CM,
在△BDM和△CEM中,
 ,
∴△BDM≌△CEM(SAS),
∴MD=ME.

22. (1)3200  (2)略(3)151°

23.(1)
                                 共有9种等可能的结果,其中符合要求的结果有3种,
∴P(第2次传球后球回到甲手里)= = .
(2)
24.(1)   ;
(2)① A , BC    如图1所示
②∵OD= ,OP= ,OC=OA+AC=3,OA=2,∴ .
故作法如下:
连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.
依此画出图形,如图2所示. 

25.解:(1)设每个篮球和每个足球的售价分别为x元,y元,
根据题意得   解之得
答:每个篮球和每个足球的售价分别为100元,120元;
(2)设足球购买a个,则篮球购买(50-a)个,
   根据题意得:120a+100(50-a)≤5500,
   整理得:20a≤500,解得:a≤25,
   答:最多可购买25个足球.

26.
 
 

27. 
28.解:(1)过P作PE⊥OA于E,
∵PQ∥OA,PM∥OB,
∴四边形OMPQ为平行四边形,
∴PM=OQ=1,∠PME=∠AOB=60°,
∴PE=PM•sin60°= ,ME= ,
∴CE=OC?OM?ME= ,
∴tan∠PCE= = ,
∴∠PCE=30°,
∴∠CPM=90°,
又∵PM∥OB,
∴∠CNO=∠CPM=90°,
则CN⊥OB;

(2)① ? 的值不发生变化,理由如下:
设OM=x,ON=y,
∵四边形OMPQ为菱形,
∴OQ=QP=OM=x,NQ=y?x,
∵PQ∥OA,
∴∠NQP=∠O,
又∵∠QNP=∠ONC,
∴△NQP∽△NOC,
∴ = ,即 = ,
∴6y?6x=xy.两边都除以6xy,得 ? = ,即 ? = .
②过P作PE⊥OA于E,过N作NF⊥OA于F,
则S1=OM•PE,S2= OC•NF,
∴ = .
∵PM∥OB,
∴∠PMC=∠O,
又∵∠PCM=∠NCO,
∴△CPM∽△CNO,
∴ = = ,
∴ = =? (x?3)2+ ,
∵0<x<6,
则根据二次函数的图象可知,0< ≤ .


本文来自:逍遥右脑记忆 http://www.jiyifa.net/chusan/1229295.html

相关阅读:九年级上数学2.5直线与圆的位置关系(3)同步练习(苏科版附答案