山
(2013•牡丹江)已知∠ACD=90°,N是过点A的直线,AC=DC,DB⊥N于点B,如图(1).易证BD+AB= CB,过程如下:
过点C作CE⊥CB于点C,与N交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE= CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB= CB.
(1)当N绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)N在绕点A旋转过程中,当∠BCD=30°,BD= 时,则CD= 2 ,CB= +1 .
考点:全等三角形的判定与性质;等腰直角三角形;旋转的性质.3718684
分析:(1)过点C作CE⊥CB于点C,与N交于点E,证明△ACE≌△DCB,则△ECB为等腰直角三角形,据此即可得到BE= CB,根据BE=AB?AE即可证得;
(2)过点B作BH⊥CD于点H,证明△BDH是等腰直角三角形,求得DH的长,在直角△BCH中,利用直角三角形中30°的锐角所对的直角边等于斜边的一半,即可求得.
解答:(1)如图(2):AB?BD= CB.
证明:过点C作CE⊥CB于点C,与N交于点E,
∵∠ACD=90°,
∴∠ACE=90°?∠DCE,∠BCD=90°?∠ECD,
∴∠BCD=∠ACE.
∵DB⊥N,
∴∠CAE=90°?∠AFC,∠D=90°?∠BFD,
∵∠AFC=∠BFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE= CB.
又∵BE=AB?AE,
∴BE=AB?BD,
∴AB?BD= CB.
如图(3):BD?AB= CB.
证明:过点C作CE⊥CB于点C,与N交于点E,
∵∠ACD=90°,
∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,
∴∠BCD=∠ACE.
∵DB⊥N,
∴∠CAE=90°?∠AFB,∠D=90°?∠CFD,
∵∠AFB=∠CFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE= CB.
又∵BE=AE?AB,
∴BE=BD?AB,
∴BD?AB= CB.
(2)如图(1),过点B作BH⊥CD于点H,
∵∠ABC=45°,DB⊥N,
∴∠CBD=135°,
∵∠BCD=30°,
∴∠CBH=60°,
∴∠DBH=75°,
∴∠D=15°,
∴BH=BD•sin45°,
∴△BDH是等腰直角三角形,
∴DH=BH= BD= × =1,
∵∠BCD=30°
∴CD=2DH=2,
∴CH= = ,
∴CB=CH+BH= +1;
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
(2013•绥化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:
(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;
(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.
考点:作图-旋转变换;作图-平移变换.3718684
分析:(1)根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;
(2)根据弧长计算公式求出即可.
解答:解:(1)如图所示:
(2)点C1所经过的路径长为: =2π.
点评:此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.
(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,
∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC
中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).
若在射线BA上存在点F,使S△DCF=S△BDE,
请直接写出相应的BF的长.
(2013•毕节地区)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2):△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转 90 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
考点:旋转的性质;全等三角形的判定与性质;正方形的性质.
专题:证明题.
分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;
(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;
(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
解答:(1)证明:∵四边形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是DCB的延长线上的点,
∴∠ABF=90°,
在△ADE和△ABF中
,
∴△ADE≌△ABF(SAS);
(2)解:∵△ADE≌△ABF,
∴∠BAF=∠DAE,
而∠DAE+∠EBF=90°,
∴∠BAF+∠EBF=90°,即∠FAE=90°,
∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;
故答案为A、90;
(3)解:∵BC=8,
∴AD=8,
在Rt△ADE中,DE=6,AD=8,
∴AE= =10,
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面积=AE2=×100=50(平方单位).
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.
15.(2013•昆明)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位,再向下平 移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;
(2)将四边形A1B1C1D1绕点A1逆时针旋转90?,得到四边形A1B2C2D2,,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标。
(2013•邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件 ∠B=90° ,使四边形ABCD为矩形.
考点:旋转的性质;矩形的判定.
专题:开放型.
分析:根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.
解答:解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,
∴AB=CD,∠BAC=∠DCA,
∴AB∥CD,
∴四边形ABCD为平行四边形,
当∠B=90°时,平行四边形ABCD为矩形,
∴添加的条件为∠B=90°.
故答案为∠B=90°.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.
(2013•柳州) 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(?6,12),B(?6,0),C(0,6),D(?6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B′;
(2)写出点A′,C′,D′的坐标;
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
考点:作图-旋转变换;扇形面积的计算.
专题:作图题.
分析:(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;
(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;
(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.
解答:解:(1)小旗A′C′D′B′如图所示;
(2)点A′(6,0),C′(0,?6),D′(0,0);
(3)∵A(?6,12),B(?6,0),
∴AB=12,
∴线段BA旋转到B′A′时所扫过的扇形的面积= =36π.
点评:本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.
(2013•茂名)在格纸上按以下要求作图,不用写作法:
(1)作出“小旗子”向右平移6格后的图案;
(2)作出“小旗子”绕O点按逆时针方向旋转 后的图案.
山
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chusan/228333.html
相关阅读: