23、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.
考点:菱形的判定;梯形;中点四边形.
专题:证明题.
分析:连接AC、BD,根据等腰梯形的对角线相等可得AC=BD,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EF=GH= AC,HE=FG= BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形判定即可.
解答:证明:如图,连接AC、BD,
∵AD∥BC,AB=CD,
∴AC=BD,
∵E、F、G、H分别为边AB、BC、CD、DA的中点,
∴在△ABC中,EF= AC,
在△ADC中,GH= AC,
∴EF=GH= AC,
同理可得,HE=FG= BD,
∴EF=FG=GH=HE,
∴四边形EFGH为菱形.
点评:本题考查了菱形的判定,等腰梯形的对角线相等,三角形的中位线平行于第三边并且等于第三边的一半,作辅助线是利用三角形中位线定理的关键,也是本题的难点.
24、(2013•常德压轴题)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,是AF的中点,连接B、E.
(1)如图1,当CB与CE在同一直线上时,求证:B∥CF;
(2)如图1,若CB=a,CE=2a,求B,E的长;
(3)如图2,当∠BCE=45°时,求证:B=E.
考点:三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.3718684
分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明B为△ADF的中位线即可;
证法二:如答图1b所示,延长B交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BA=∠DF,根据中点定义可得A=F,然后利用“角边角”证明△AB和△FD全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EB=45°,从而得到∠EB=∠ECF,再根据同位角相等,两直线平行证明B∥CF即可,
(2)解法一:如答图2a所示,作辅助线,推出B、E是两条中位线;
解法二:先求出BE的长,再根据全等三角形对应边相等可得B=D,根据等腰三角形三线合一的性质可得E⊥BD,求出△BE是等腰直角三角形,根据等腰直角三角形的性质求解即可;
(3)证法一:如答图3a所示,作辅助线,推出B、E是两条中位线:B= DF,E= AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明B=E;
证法二:如答图3b所示,延长B交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BA=∠DF,根据中点定义可得A=F,然后利用“角边角”证明△AB和△FD全等,再根据全等三角形对应边相等可得AB=DF,B=D,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.
解答:(1)证法一:
如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,
∴点B为线段AD的中点,
又∵点为线段AF的中点,
∴B为△ADF的中位线,
∴B∥CF.
证法二:
如答图1b,延长B交EF于D,
∵∠ABC=∠CEF=90°,
∴AB⊥CE,EF⊥CE,
∴AB∥EF,
∴∠BA=∠DF,
∵是AF的中点,
∴A=F,
∵在△AB和△FD中,
,
∴△AB≌△FD(ASA),
∴AB=DF,
∵BE=CE?BC,DE=EF?DF,
∴BE=DE,
∴△BDE是等腰直角三角形,
∴∠EB=45°,
∵在等腰直角△CEF中,∠ECF=45°,
∴∠EB=∠ECF,
∴B∥CF;
(2)解法一:
如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=AD= a,
∴点B为AD中点,又点为AF中点,
∴B= DF.
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF= a,
∴点E为FG中点,又点为AF中点,
∴E= AG.
∵CG=CF= a,CA=CD= a,
∴AG=DF= a,
∴B=E= × a= a.
解法二:
∵CB=a,CE=2a,
∴BE=CE?CB=2a?a=a,
∵△AB≌△FD,
∴B=D,
又∵△BED是等腰直角三角形,
∴△BE是等腰直角三角形,
∴B=E= BE= a;
(3)证法一:
如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,AC=CD,
∴点B为AD中点,又点为AF中点,∴B= DF.
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG,
∴点E为FG中点,又点为AF中点,∴E= AG.
在△ACG与△DCF中,
,
∴△ACG≌△DCF(SAS),
∴DF=AG,
∴B=E.
证法二:
如答图3b,延长B交CF于D,连接BE、DE,
∵∠BCE=45°,
∴∠ACD=45°×2+45°=135°
∴∠BAC+∠ACF=45°+135°=180°,
∴AB∥CF,
∴∠BA=∠DF,
∴是AF的中点,
∴A=F,
在△AB和△FD中, ,
∴△AB≌△FD(ASA),
∴AB=DF,B=D,
∴AB=BC=DF,
∵在△BCE和△DFE中,
,
∴△BCE≌△DFE(SAS),
∴BE=DE,∠BEC=∠DEF,
∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,
∴△BDE是等腰直角三角形,
又∵B=D,
∴B=E= BD,
故B=E.
点评:本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chusan/238370.html
相关阅读: