M
考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.
分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;
(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;
(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.
解答:(1)证明:∵AB=BC,∠A=36°,
∴∠ABC=∠C=72°,
又∵BE平分∠ABC,
∴∠ABE=∠CBE=36°,
∴∠BEC=180°?∠C?∠CBE=72°,
∴∠ABE=∠A,∠BEC=∠C,
∴AE=BE,BE=BC,
∴AE=BC.
(2)证明:∵AC=AB且EF∥BC,
∴AE=AF;
由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,
∵在△CAE′和△BAF′中
,
∴△CAE′≌△BAF′,
∴CE′=BF′.
(3)存在CE′∥AB,
理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,
如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,
∴∠BAM=∠ABC=72°,又∠BAC=36°,
∴α=∠CAM=36°.
②当点E的像E′与点N重合时,
由AB∥l得,∠AMN=∠BAM=72°,
∵AM=AN,
∴∠ANM=∠AMN=72°,
∴∠MAN=180°?2×72°=36°,
∴α=∠CAN=∠CAM+∠MAN=72°.
所以,当旋转角为36°或72°时,CE′∥AB.
点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.
46、(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.
(1)请写出这种做法的理由;
(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.
考点:作图―应用与设计作图;平行线的性质;等腰三角形的性质.
分析:(1)根据平行线的性质得出即可;
(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;
(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.
解答:解:(1)PC∥a(两直线平行,同位角相等);
(2)∠PAB=∠PDA=∠BDC=∠1,
如图,∵PA=PD,
∴∠PAB=∠PDA,
∵∠BDC=∠PDA(对顶角相等),
又∵PC∥a,
∴∠PDA=∠1,
∴∠PAB=∠PDA=∠BDC=∠1;
(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.
点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细,理解题意,正确作答.
47、(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.
求证:△GAB是等腰三角形.
考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.
专题:证明题.
分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.
解答:证明:∵在等腰梯形中ABCD中,AD=BC,
∴∠D=∠C,∠DAB=∠CBA,
在△ADE和△BCF中,
,
∴△ADE≌△BCF(SAS),
∴∠DAE=∠CBF,
∴∠GAB=∠GBA,
∴GA=GB,
即△GAB为等腰三角形.
点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.
48、(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
考点:全等三角形的判定与性质;等腰三角形的性质.
专题:证明题.
分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可;
(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.
解答:证明:(1)∵AB=AC,D是BC的中点,
∴∠BAE=∠EAC,
在△ABE和△ACE中, ,
∴△ABE≌△ACE(SAS),
∴BE=CE;
(2)∵∠BAC=45°,BF⊥AF,
∴△ABF为等腰直角三角形,
∴AF=BF,
∵AB=AC,点D是BC的中点,
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中, ,
∴△AEF≌△BCF(ASA).
点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.
49、(2013哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.
(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= QG?
考点:等边三角形判定与性质、相似三角形判定与性质、直角三角形的判定、三角形内角和、等腰三角形判定,一元一次方程
分析:(1)由△AOB为等边三角形得∠ACB=∠OBC=300,
由此CO=OB=AB=OA=3,在RT△ABC中,AC为6 ,从而BC= (2)过点Q作QN∥0B交x轴于点N,先证△AQN为等边三角形,从而NQ=NA=AQ=3-t,NON=3- (3-t)=t
PN=t+t=2t,再由△POE∽△PNQ后 对应边成比例计算得 再由EF=BE易得出m与t之间的函数关系式
(3)先证△AE’G为等边三角形,再证∠QGA=900
通过两边成比例夹角相等得△FCP∽△BCA 再用含t的式子表示BQ、、PF、QG通过解方程求出
解答:(1)解:如图l∵△AOB为等边三角形 ∴∠BAC=∠AOB=60。
∵BC⊥AB ∴∠ABC=900 ∴∠ACB=300∠OBC=300
∴∠ACB=∠OBC ∴CO=OB=AB=OA=3
∴AC=6 ∴BC= AC=
(2)解:如图l过点Q作QN∥0B交x轴于点N
∴∠QNA=∠BOA=600=∠QAN ∴QN=QA
∴△AQN为等边三角形
∴NQ=NA=AQ=3-t
∴NON=3- (3-t)=t
∴PN=t+t=2t
∴OE∥QN.∴△POE∽△PNQ
∴
∴ ∴
∵EF∥x轴
∴∠BFE=∠BCO=∠FBE=300
∴EF=BE∴m=BE=OB-OE
(0<t<3)
(3)解:如图2
∴∠AEG=600=∠EAG
∴GE1=GA ∴△AE’G为等边三角形
∴∠l=∠2 ∠3=∠4
∵∠l+∠2+∠3+∠4=1800∴∠2+∠3=900
即∠QGA=900
∵∠FCP=∠BCA ∴△FCP∽△BCA.
∵2BQ―PF= QG ∴ ∴t=1∴当t=1 时,2BQ―PF= QG
50、(2013•牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB= CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE= CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB= CB.
(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD= 时,则CD= 2 ,CB= +1 .
考点:全等三角形的判定与性质;等腰直角三角形;旋转的性质.
分析:(1)过点C作CE⊥CB于点C,与MN交于点E,证明△ACE≌△DCB,则△ECB为等腰直角三角形,据此即可得到BE= CB,根据BE=AB?AE即可证得;
(2)过点B作BH⊥CD于点H,证明△BDH是等腰直角三角形,求得DH的长,在直角△BCH中,利用直角三角形中30°的锐角所对的直角边等于斜边的一半,即可求得.
解答:(1)如图(2):AB?BD= CB.
证明:过点C作CE⊥CB于点C,与MN交于点E,
∵∠ACD=90°,
∴∠ACE=90°?∠DCE,∠BCD=90°?∠ECD,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°?∠AFC,∠D=90°?∠BFD,
∵∠AFC=∠BFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE= CB.
又∵BE=AB?AE,
∴BE=AB?BD,
∴AB?BD= CB.
如图(3):BD?AB= CB.
证明:过点C作CE⊥CB于点C,与MN交于点E,
∵∠ACD=90°,
∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°?∠AFB,∠D=90°?∠CFD,
∵∠AFB=∠CFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE= CB.
又∵BE=AE?AB,
∴BE=BD?AB,
∴BD?AB= CB.
(2)如图(1),过点B作BH⊥CD于点H,
∵∠ABC=45°,DB⊥MN,
∴∠CBD=135°,
∵∠BCD=30°,
∴∠CBH=60°,
∴∠DBH=75°,
∴∠D=15°,
∴BH=B D•sin45°,
∴△BDH是等腰直角三角形,
∴DH=BH= BD= × =1,
∵∠BCD=30°
∴CD=2DH=2,
∴CH= = ,
∴CB=CH+BH= +1;
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
51、(2013•绥化压轴题)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2?14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
考点:一次函数综合题
分析:(1)通过解方程x2?14x+48=0可以求得OC=6,OA=8.则C(0,6);
(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;
(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.
解答:解:(1)解方程x2?14x+48=0得
x1=6,x2=8.
∵OA,OC(OA>OC)的长分别是一元二次方程x2?14x+48=0的两个实数根,
∴OC=6,OA=8.
∴C(0,6);
(2)设直线MN的解析式是y=kx+b(k≠0).
由(1)知,OA=8,则A(8,0).
∵点A、C都在直线MN上,
∴ ,
解得, ,
∴直线MN的解析式为y=? x+6;
(3)∵A(8,0),C(0,6),
∴根据题意知B(8,6).
∵点P在直线MNy=? x+6上,
∴设P(a,? a+6)
当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:
①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);
②当PC=BC时,a2+(? a+6?6)2=64,
解得,a= ,则P2(? , ),P3( , );
③当PB=BC时,(a?8)2+(? a+6?6)2=64,
解得,a= ,则? a+6=? ,∴P4( ,? ).
综上所述,符合条件的点P有:P1(4,3),P2(? , )P3( , ),P4( ,? ).
点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.
52、(2013•郴州)如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)证明:△PCE是等腰三角形;
(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;
(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.
考点:等腰三角形的判定与性质;二次函数的最值;解直角三角形.
分析:(1)根据等边对等角可得∠A=∠C,然后根据两直线平行,同位角相等求出∠CPE=∠A,从而得到∠CPE=∠C,即可得证;
(2)根据等腰三角形三线合一的性质求出CM= CP,然后求出EM,同理求出FN、BH的长,再根据结果整理可得EM+FN=BH;
(3)分别求出EM、FN、BH,然后根据S△PCE,S△APF,S△ABC,再根据S=S△ABC?S△PCE?S△APF,整理即可得到S与x的关系式,然后利用二次函数的最值问题解答.
解答:(1)证明:∵AB=BC,
∴∠A=∠C,
∵PE∥AB,
∴∠CPE=∠A,
∴∠CPE=∠C,
∴△PCE是等腰三角形;
(2)解:∵△PCE是等腰三角形,EM⊥CP,
∴CM= CP= ,tanC=tanA=k,
∴EM=CM•tanC= •k= ,
同理:FN=AN•tanA= •k=4k? ,
由于BH=AH•tanA= ×8•k=4k,
而EM+FN= +4k? =4k,
∴EM+FN=BH;
(3)解:当k=4时,EM=2x,FN=16?2x,BH=16,
所以,S△PCE= x•2x=x2,S△APF= (8?x)•(16?2x)=(8?x)2,S△ABC= ×8×16=64,
S=S△ABC?S△PCE?S△APF,
=64?x2?(8?x)2,
=?2x2+16x,
配方得,S=?2(x?4)2+32,
所以,当x=4时,S有最大值32.
点评:本题考查了等腰三角形的判定与性质,平行线的性质,锐角三角函数,二次函数的最值问题,表示出各三角形的高线是解题的关键,也是本题的难点.
53、(13年安徽省14分、23压轴题)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。如图1,四边形ABCD即为“准等腰梯形”。其中∠B=∠C。
(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可)。
(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C,E为边BC上一点,若AB∥DE,AE∥DC,求证:
(3)在由不平行于BC的直线截ΔPBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E,若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论(不必说明理由)
5 Y
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chusan/81220.html
相关阅读: