1.2数轴、相反数与绝对值(2)
教学目标:
1、知识与技能 :(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点
1、重点: 理解相反数的意义,会求一个数的相反数。
2、难点: 对相反数意义的理解。
教学过程:
一、创设情景,导入新
1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究
1、(出示小黑板)
教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?
学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。
0的相反数是0
3、学生活动:在数轴上,表示互为相反数的两个点有什么关系?
学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习填空:
3的相反数是 ; -6的相反数是 ;
的相反数是 ;-(-3)= ;
-(-0.8)= ;-( )= ;
学生活动:在练习本上解答,并与同伴交流,师生共同订正。
归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
三、应用迁移,巩固提高
1、本P10第1题
2、填空:
① 的相反数是 ; ② 的相反数是 ; 的相反数是2/3。
3、如果一个数的相反数是它本身,则这个数是 。
4、若α、β互为相反数,则α+β= 。
5、-(-4)是 的相反数,-(-2)的相反数是 。
6、化简下列各数的符号
-(-9)= ; +(-3.5)= ;
-= ; -{-[+(-7)]}= 。
7、若-x=10,则x的相反数在原点的 侧。
8、若 的相反数是-3,则 ;若 的相反数是-5.7,则
四、反思
本节学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
五、后作业
本P13习题1.2A组第3、4题
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuyi/48439.html
相关阅读:绝对值导学案