学习目标:1、了解立方根的概念,会用根号表示;
2、了解开立方与立方互为逆运算,会用立方运算求一个数的立方根。
重点是立方根的概念和开立方运算.难点是例2(2)涉及两种开方运算。
【要点预习】
1.立方根的概念:如果一个数的 等于 ,这个数就叫做 的立方根,也叫做 的三次方根.记做 .
2.开立方的概念:求一个数的 的运算,叫做开立方.
3.立方根的性质:一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 .
【课前热身】[
1. 的立方根是…………………………………( )
A. B. C. D.
2. 一个体积为8cm3的正方体,其棱长是 cm.
3.因为 的立方是27,所以27的立方根是 ,即 .
【讲练互动】
【例1】求下列各数的立方根.
.
【例2】求下列各式的值:
(1) ; (2) +
【同步测控】
基础自测
1. 等于……………………………………………( )
A. 9 B. -9 C. 3 D. -3
2. 下列说法中正确的是…………………………………( )
A.一个正数的平方根和立方根都只有一个 B.零的平方根和立方根是零
C.1的平方根与立方根都等于它本身 D.一个数的立方根与其自身相等的数只有-1
3.一个立方体的体积是125立方米,则它的棱长为 .
4. 若 ____________.5. -8的立方根与9的算术平方根的积是 .
能力提升
6. 一个数的立方根是它本身,则这个数是…………………………………………( )
A. 1 B. 0或1 C. -1或1 D. 1,0或-1
7. 若一个数的平方根是 ,则这个数的立方根是………………………………( )
A. 4 B. C. 2 D.
.8.求下列各式中的 :
(1) ; (2) .
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuyi/70406.html
相关阅读:等式与方程