【—初二数学平方差】平方差的内容主要是用来解答代数式的。接下来的内容是初二数学知识点之平方差。
平方差
当除式是两个数之和以及这两个数之差相乘时,积是二项式。
这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差,即(a+b)(a-b)=a^2-b^2,两数的和与这两数的差的积,就是它们的平方差。
[逆推导平方差公式]
a^2-b^2
=a^2-b^2+(ab-ab) =(a^2-ab)+(ab-b^2)
=a(a-b)+b(a-b)
=(a+b)(a-b)
还有100c?=1d?
公式运用 可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
1×(3+4倍根号2)/(3-4倍根号2)^2=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成996和995
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有时应注意加减的过程。
常见错误 平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。
三角平方差公式 三角函数公式中,有一组公式被称为三角平方差公式:
(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)
(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)
这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项 1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
温馨提示:为大家整合的初二数学知识点之平方差,同学们已经熟记了吧。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/117151.html
相关阅读:初中数学三角函数万能公式大全详解