【—三角函数N倍角公式】不论是二倍角公式、或是三倍角公式、又或者四倍角公式等等,需要的推理过程都是一样的。
N倍角公式
根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)
为方便描述,令sinθ=s,cosθ=c
考虑n为正整数的情形:
cos(nθ)+ i sin(nθ)
= (c+ i s)^n
= C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...
+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...
=>;比较两边的实部与虚部
实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...
i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...
对所有的自然数n,
⒈ cos(nθ):
公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
⒉ sin(nθ):
⑴当n是奇数时:
公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。
⑵当n是偶数时:
公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。
(例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/138098.html
相关阅读:认真听课是学好初中数学的重要环节