对的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在的基础上、在应用它们解决问题时再加深理解。打一个比方,的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的、技巧和敏捷的,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
的两个分支-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/146971.html
相关阅读:初中数学正切函数的重要知识点