三角函数定名法则公式定理大全

编辑: 逍遥路 关键词: 初中数学 来源: 高中学习网


  【—三角函数定名法则】公式要领:y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)。

  定名法则

  90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。

  定号法则

  将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”。(或为“奇变偶不变,符号看象限”)。

  在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。)还可简记为:sin上cos右tan对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan的正值斜着。

  比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

  还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα。

  对称轴与对称中心

  y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)

  公式要领总结:y=tanx 对称轴:无对称轴:对称中心:(kπ/2,0)(k∈z)。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/181244.html

相关阅读:初三数学制定计划的学习方法