数学有一个特点是重要、枯燥。重要是显而易见的,数学作为基础学科,高考、中考都考数学;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学学习当中的技巧性问题和心理问题。当然不可能人人都能把数学学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力…..各人的倾向性不一样,擅长的方面也各不相同,对数学能达到的层次也会参差不齐,但有一点,数学的一些基本要求一定要掌握,例如数学中的一些基本原理、数学方法不能有半点马虎。因为无论将来我们从事什么行业,数学作为一种基本的处理事物的方法都非常重要。一般的孩子只要通过正确的方法,正确的引导都能够达到。以下是谢达鸿老师强调的数学学习中的几项重要内容:
一.数学中关于概念的问题
概念的形成需要一个过程。与人生哲理等概念不同,数学概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学中的一个根本问题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的一个阶段。
概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。
概念是随着一个人知识的增加而不断深入的。学数学对一个人建立完整的思维方式很重要,随着对不同数学概念的深入理解,人们处理问题的方式可以越来越趋于严谨。
要建立一个数学的概念网。数学是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清析的脉络。 从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学末学深入。
二.运算能力:符号化、模式化是数学的一大特点,对这点我们应该有深刻的认识。
模式化。数学的一些定理、原理、公理都有一定的模式,“因为……所以…”即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。
符号化。数学的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数学就是符号游戏,我们对符号必须精通,才能进行迅速变形。
中学阶段有几个重要的定理:三垂线定理、正余弦定理、根与系数的关系、二次三项式定理。对这几个定理的运用必须熟练掌握。
三.做题技巧。
从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。
做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,因为高考中有20%的难题,平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。
做题要留下体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的相互融合,就实现了对新、旧知识的最新体会。
四.数学方法。常见的数学方法有如下几种:
化归法,即代入消元法。将复杂化问题化为若干个简单的问题的一种思想。高二、高三数学中消参的思想就是此法的一例。 注意经常对知识进行归纳、整理、总结,促进学过的知识更加系统化、条理化,解题时就能比较顺利地将内在关系理顺。 做题时应树立一种次序和关联的思想。数学的题干中各要素一般都是按一定的次序和关系排放的,做题前要审清题意,分先后,分主次,各个击破。
方程的思想方法。
分类讨论的方法。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/1840.html
相关阅读:实例解析初三数学学习方法(5)