【—初二数学一次函数的应用】当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数。
一次函数的应用
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数
三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (若分母为0,则分子为0)
x y
+, +(正,正)在第一象限
- ,+ (负,正)在第二象限
- ,- (负,负)在第三象限
+ ,- (正,负)在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
口诀:右减左加(对于y=kx+b来说,只改变n)
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口诀:上加下减(对于y=kx+b来说,只改变b)
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
当时间t一定,距离s是速度v的一次函数。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/187274.html
相关阅读:初中数学三角形射影定理公式证明