三角正弦函数图像性质的公式表

编辑: 逍遥路 关键词: 初中数学 来源: 高中学习网




  【—锐角正弦函数图像性质公式表】大家在观察正弦函数的图像时,需要注意定义域和值域间的相互变化关系,从而得出图像的性质结论。

  图像性质

  定义域

  实数集R

  值域

  [-1,1] (正弦函数有界性的体现)

  最值和零点

  ①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1

  ②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1

  零值点:(kπ,0) ,k∈Z

  对称性

  既是轴对称图形,又是中心对称图形。

  1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称

  2)中心对称:关于点(kπ,0),k∈Z对称

  周期性

  最小正周期:y=Asin(ωx+φ) T=2π/ω

  奇偶性

  奇函数 (其图象关于原点对称)

  单调性

  在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.

  在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.

  我们在初中数学学习过的锐角正弦函数的图像,必须是在直角坐标系中得出的。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/197017.html

相关阅读:初中数学知识点集锦之视图

闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�