因式分解的方法?初中数学知识点总结

编辑: 逍遥路 关键词: 初中数学 来源: 高中学习网


  【—因式分解总结】知识要点:因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、公式法。

  因式分解的方法

  注意三原则

  1.分解要彻底(是否有公因式,是否可用公式)

  2.最后结果只有小括号

  3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))

  4.最后结果每一项都为最简因式

  归纳方法:

  1.提公因式法。

  2.公式法。

  3.分组分解法。

  4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]

  5.组合分解法。

  6.十字相乘法。

  7.双十字相乘法。

  8.配方法。

  9.拆项补项法。

  10.换元法。

  11.长除法。

  12.求根法。

  13.图象法。

  14.主元法。

  15.待定系数法。

  16.特殊值法。

  17.因式定理法。

  基本方法  各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。

  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式

  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/209807.html

相关阅读:初三数学二次根式题目大全