【—轴对称】轴对称要领:在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
轴对称
应用试题
例1 △ABC中,为∠A外角平分线上一点,求证:PB+PC>AB+AC.
分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把 AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.
证:(略).
点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).
例2等腰梯形的对角线互相垂直,且它的中位线等于,求此梯形的高.
解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.
∴OM+ON= ,所以梯形高MN=m.
知识总结:如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/239961.html
相关阅读:初中数学知识点总结之有理数比大小
鐗堟潈澹版槑锛氭湰鏂囧唴瀹圭敱浜掕仈缃戠敤鎴疯嚜鍙戣础鐚紝璇ユ枃瑙傜偣浠呬唬琛ㄤ綔鑰呮湰浜恒€傛湰绔欎粎鎻愪緵淇℃伅瀛樺偍绌洪棿鏈嶅姟锛屼笉鎷ユ湁鎵€鏈夋潈锛屼笉鎵挎媴鐩稿叧娉曞緥璐d换銆傚鍙戠幇鏈珯鏈夋秹瀚屾妱琚镜鏉�/杩濇硶杩濊鐨勫唴瀹癸紝璇峰彂閫侀偖浠惰嚦 4509422@qq.com 涓炬姤锛屼竴缁忔煡瀹烇紝鏈珯灏嗙珛鍒诲垹闄ゃ€�