【—等腰梯形总结】知识要点:一组对边平行且不相等,另一组对边不平行但相等的平面四边形,叫做等腰梯形。
等腰梯形的性质
1、等腰梯形同一底上的两个内角相等。
2、两腰相等,两底平行,对角线相等 。
3、由托勒密定理可得等腰梯形ABCD,有AB*CD+BC*AD=AC*BD。
4、中位线长是上下底边长度和的一半。
5、两条对角线相等,是轴对称图形,只有一条对称轴,上底和下底的中垂线就是它的对称轴。
6、对角线分成的四个三角形有3对全等形, 一对相似形。
7、等腰梯形的面积公式等于 (上底+下底)*高*1/2。
8、特殊面积计算:当对角线垂直时 :(BD×AC)/2 。
9、性质定理:等腰梯形在同一底上的两个底角相等,等腰梯形的两条对角线相等。
几何语言: ∵四边形ABCD是等腰梯形 ∴∠A+∠B=180°,∠C+∠D=180°(两直线平行,同旁内角互补) 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 。
几何语言: ∵∠BAD=∠ADC,∠DCB=∠ABC ∴四边形ABCD是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形)。
10、对角线的平方等于腰的平方与上、下底积的和。BD²=AC²=AB²+AD·BC=DC²+AD·BC
11、等腰梯形是轴对称图形,对称轴是通过两底中点的直线。
等腰梯形的判定
1、同一底上的两个角相等的梯形是等腰梯形。
2、一组对边平行且不等,另一组对边相等且不平行的四边形是等腰梯形。
3、对角线相等且能形成两个等腰三角形的四边形是等腰梯形。
4、对角互补的梯形是等腰梯形。
5、对角线相等的梯形是等腰梯形。
梯形面积公式
梯形的面积=(上底+下底)×高/2;
用“a”、“b”、“h”分别表示梯形的上底、下底、高,“S”表示梯形的面积
则S=(a+b)h/2。
特殊情况有以下算法:
1、若对角线互相垂直,则面积为1/2两对角线的乘积。
2、中位线乘高。
梯形的周长
等腰梯形的周长=上底+下底+2×腰 。
用“a”、“b”、“c”分别表示梯形的上底、下底、两腰,“C”表示等腰梯形的周长,则C=a+b+2c 。
知识要领总结:中位线长是上下底边长度和的一半。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/252889.html
相关阅读:初中数学矩形的公式应用
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�