(1)误认为梯形只有等腰梯形与直角梯形两种,而实质上这两种只是梯形的一个特殊情况;(2)对等腰梯形判定定理把握不准,忽视了“同一底”这一前提条件。
【典型例题】(2010年安徽省模拟)如图,在梯形ABCD中AD//BC 初中学习方法,BD=CD,且∠ABC为锐角,若AD=4 ,BC=12,E为BC上的一点,当CE分别为何值时,四边形ABED是等腰梯形?直角梯形?写出你的结论,并加以证明。
解:当CE=4时,四边形ABCD是等腰梯形
在BC上截取CE=AD,连接DE、AE.
又∵AD//BC, ∴四边形AECD是平行四边形
∴AE=CD=BD
∵BE=12-4=8>4, 即BE>AD
∴AB不平行于DE∴四边形ABED是梯形
∵AE//CD,CD=BD, ∴∠AEB=∠C=∠DBE[来源:学科网]
在△ABE和△DEB中
AE=DB, ∠AEB=∠DBE,BE=EB
△ABE≌△DEB(SAS) , ∴AB=DE
∴四边形ABED是等腰梯形
当CE=6,四边形ABED是直角梯形
在BC上取一点E,使得EC=BE=BC=6,连接DE,
∵BD=CD,∴DE⊥BC
又∵BE≠AD,AD//BE, ∴AB不平行于DE
∴四边形ABDE是直角梯形。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/32989.html
相关阅读:初中数学知识点总结:概率的简单应用
鐗堟潈澹版槑锛氭湰鏂囧唴瀹圭敱浜掕仈缃戠敤鎴疯嚜鍙戣础鐚紝璇ユ枃瑙傜偣浠呬唬琛ㄤ綔鑰呮湰浜恒€傛湰绔欎粎鎻愪緵淇℃伅瀛樺偍绌洪棿鏈嶅姟锛屼笉鎷ユ湁鎵€鏈夋潈锛屼笉鎵挎媴鐩稿叧娉曞緥璐d换銆傚鍙戠幇鏈珯鏈夋秹瀚屾妱琚镜鏉�/杩濇硶杩濊鐨勫唴瀹癸紝璇峰彂閫侀偖浠惰嚦 4509422@qq.com 涓炬姤锛屼竴缁忔煡瀹烇紝鏈珯灏嗙珛鍒诲垹闄ゃ€�