中考数学直角三角形内切圆答题技巧

编辑: 逍遥路 关键词: 初中数学 来源: 高中学习网




中考数学直角三角形内切圆答题技巧

我们知道利用面积法可以解决直角三角形内切圆半径的问题,在此基础上发现若有两个等圆内切于直角三角形中,也可按面积法求解,具体过程如下。

已知:在Rt?ABC中,⊙O1 ,⊙O2两等圆外切于H, ⊙O1 切AC、AB于D、E两点,⊙O2 切BC、AB于F、G两点,若AC=4,BC=3,求⊙O1与⊙O2的半径。

解:连接O1 A, O1 D, O1 E, O1 C, O1 O2, O2 C, O2 F, O2 B, O2 G, O1 G,过C作CIAB交AB于I,交O1 O2于J

设⊙O1与⊙O2的半径为r

∵⊙O1 ,⊙O2两等圆外切于H, ⊙O1 切AC、AB于D、E两点,

⊙O2 切BC、AB于F、G两点

O1 DAC , O1 EAB, O2 GAB, O2 FBC

S?AO1C=ACO1D=2r S?BO2C=

BCO2F=1.5r

S?AO1G+ S?O2GB =

AGO1E+GBO2G=

r(AG+ GB)=2.5r

又∵CIAB交AB于I,交O1 O2于J

CJ+ O2G = CJ+JI=CI CI==2.4

S?CO1 O2+ S?O1 O2G =

O1 O2CJ+O1 O2O2G=

O1 O2CI=2.4r

即S?ABC= S?AO1C+ S?BO2C+ S?AO1G+ S?O2GB+ S?CO1 O2+ S?O1 O2G==6

8.4r=6 , r=

现推广到一般情况在Rt?ABC中C=90,⊙O1 ,⊙O2⊙On(n为正整数)两两等圆外切, ⊙O1切AC、AB,⊙On 切BC、AB, 若AC=b,BC=a,求⊙O1 ,⊙O2 ,⊙On的半径。

解:用类比思想我们可以知道,设⊙O1 ,⊙O2 ,⊙On的半径为r

S?ABC = S1+ S2+ (S3+ S4)+ (S5+ S6)=br+ar+r+2(n-1)r

又∵S?ABC =ab

r=


本文来自:逍遥右脑记忆 http://www.jiyifa.net/chuzhong/585065.html

相关阅读:必备的初二下册数学第二章知识点归纳:反比例函数

闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�