高二数学学习:高二数学选修1圆锥曲线

编辑: 逍遥路 关键词: 高二学习指导 来源: 高中学习网


为了帮助学生们更好地学习高中数学,精心为大家搜集整理了“高二数学学习:高二数学选修1圆锥曲线”,希望对大家的数学学习有所帮助!

高二数学学习:高二数学选修1圆锥曲线

第二章:圆锥曲线

知识点:

1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.

2、椭圆的几何性质:

焦点的位置焦点在轴上焦点在轴上

图形

标准方程

范围且且

顶点、

、、

轴长短轴的长 长轴的长

焦点、、

焦距

对称性关于轴、轴、原点对称

离心率

准线方程

3、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

4、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

5、双曲线的几何性质:

焦点的位置焦点在轴上焦点在轴上

图形

标准方程

范围或,或,

顶点、、

轴长虚轴的长 实轴的长

焦点、、

焦距

对称性关于轴、轴对称,关于原点中心对称

离心率

准线方程

渐近线方程

6、实轴和虚轴等长的双曲线称为等轴双曲线.

7、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

8、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

9、抛物线的几何性质:

标准方程

图形

顶点

对称轴轴轴

焦点

准线方程

离心率

范围

10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.

考点:1、圆锥曲线方程的求解

2、直线与圆锥曲线综合性问题

3、圆锥曲线的离心率问题

典型例题:★★1.设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为( )

A. B. C. D.

★★2.与直线和曲线都相切的半径最小的圆的标准方程是 .

★★★3.(本小题满分14分)

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1.

(1)求椭圆的标准方程;

(2)若直线与椭圆相交于两点(不是左右顶点),且以 为直径的图过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.

经过精心的整理,有关“高二数学学习:高二数学选修1圆锥曲线”的内容已经呈现给大家,祝大家学习愉快!


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/158042.html

相关阅读:高考前必看的十项生物经典结论