磁场

编辑: 逍遥路 关键词: 高二 来源: 高中学习网



选修3-1第三 磁场 教案
第一节 磁现象和磁场(1时)
一.目标
(一)知识与技能
1.了解磁现象,知道磁性、磁极的概念。
2.知道电流的磁效应、磁极间的相互作用。
3.知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的.知道地球具有磁性。
(二)过程与方法
利用类比法、实验法、比较法使学生通过对磁场的客观认识去理解磁场的客观实在性。
(三)情感态度与价值观
通过类比的学习方法,培养学生的逻辑思维能力,体现磁现象的广泛性
二.重点与难点:
重点:电流的磁效应和磁场概念的形成
难点:磁现象的应用
三、教具:多媒体、条形磁铁、直导线、小磁针若干、投影仪
四、过程:
(一)引入:介绍生活中的有关磁现象及本所要研究的内容。在本,我们要学习磁现象、磁场的描述、磁场对电流的作用以及对运动电荷的作用,知识主线十分清晰。本共二个单元。第一、二、三节为第一单元;第四~第六节为第二单元。
复习提问,引入新
[问题]初中学过磁体有几个磁极?[学生答]磁体有两个磁极:南极、北极.
[问题]磁极间相互作用的规律是什么?[学生答]同名磁极相互排斥,异名磁极相互吸引.
[问题]两个不直接接触的磁极之间是通过什么发生相互作用的?[学生答]磁场.
[过渡语]磁场我们在初中就有所了解,从今天我们要更加深入地学习它。
(二)新讲解-----第一节、磁现象和磁场
1.磁现象
(1)通过介绍人们对磁现象的认识过程和我国古代对磁现象的研究、指南针的发明和作用认识磁现象
(2)可以通过演示实验(磁极之间的相互作用、磁铁对铁钉的吸引)和生活生产中涉及的磁体(喇叭、磁盘、磁带、磁卡、门吸、电动机、电流表)形象生动地认识磁现象。
【板书】磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。
2.电流的磁效应
(1)介绍人类认识电现象和磁现象的过程。
(2)演示奥斯特实验:让学生直观认识电流的磁效应。做实验时可以分为四种情形观察并记录现象:水平电流在小磁针的正上方时,让电流分别由南向北流和由北向南流;水平电流在小磁针的正下方时,让电流分别由南向北和由北向南流。在认识电流的磁效应的同时,也为地磁场和通电直导线的磁场的教学埋下伏笔,也可以留下问题让学生思考。
了解电流的磁效应的发现过程,体现物理思想(电与磁有联系)和研究方法(奥斯特实
验),认识到奥斯特实验在电磁学中的重要意义(打开了电磁学的大门),为后法拉第的研究工作(电能生磁、磁也可以生电)奠定了基础。
【板书1】磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)
【板书2】电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。
3.磁场
演示:磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,应说明磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场。
【板书1】磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。
【板书2】.磁场的基本性质:对处于其中的磁极和电流有力的作用.
【板书3】磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的。

4.磁性的地球
明白地理的南北极和地磁的南北极的区别,了解磁偏角,介绍沈括对磁偏角的研究。用一个条形磁铁模拟地磁场,说明小磁针静止时为什么会指向地理的南北极。
【板书1】地球是一个巨大的磁体,地球周围存在磁场---地磁场。地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角。
地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。
宇宙中的许多天体都有磁场。月球也有磁场。
(三)对本节知识做简要的小结
(四)巩固新:1。让学生复习本内容。
2。指导学生阅读STS
3。完成问题与练习(作练习)

第二节 、 磁感应强度(1时)
一、教学目标
(一)知识与技能
1.理解和掌握磁感应强度的方向和大小、单位。
2.能用磁感应强度的定义式进行有关计算。
(二)过程与方法
通过观察、类比(与电场强度的定义的类比)使学生理解和掌握磁感应强度的概念,为学生形成物理概念奠定了坚实的基础。
(三)情感态度与价值观
培养学生探究物理现象的兴趣,提高综合学习能力。
二、重点与难点:
磁感应强度概念的建立是本节的重点(仍至本的重点),也是本节的难点,通过与电场强度的定义的类比和演示实验突破难点
三、教具:蹄形磁铁,低压电,多媒体等。
四、教学过程:
(一)复习上时知识后引入
要点:磁场的概念。 提问、引入新:
磁场不仅具有方向,而且也具有强弱,为表征磁场的强弱和方向就要引入一个物理量.怎样的物理量能够起到这样的作用呢? (紧接着教师提问以下问题.)
1.哪个物理量描述电场的强弱和方向?
[学生答]用电场强度描述电场的强弱和方向.
2.电场强度是如何定义的?其定义式是什么?
[学生答]电场强度是通过将一检验电荷放在电场中分析电荷所受的电场力与检验电荷量的比值定义的,其定义式为E=F/q
过渡语:今天我们用相类似的方法学习描述磁场强弱和方向的物理量——磁感应强度.
(二)新讲解-----第二节 、 磁感应强度
1.磁感应强度的方向
【演示】让小磁针处于条形磁铁产生的磁场和竖直方向通电导线产生的磁场中的各个点时,小磁针的N极所指的方向不同,认识磁场具有方向性,明确磁感应强度的方向的规定。
【板书】小磁针静止时N极所指的方向规定为该点的磁感应强度方向
过渡语:能不能用很小一段通电导体检验磁场的强弱呢?
2.磁感应强度的大小
【演示1】用不同的条形磁铁所能吸起的铁钉的个数是不同的,说明磁场有强弱。
【演示2】探究影响通电导线受力的因素(如图)
先介绍匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。
后定性演示(控制变量法)①保持通电导线的长度不变,改变电流的大小②保持电流不变,改变通电导线的长度。让学生观察导线受力情况。
【板书1】精确实验表明,通电导线和磁场方向垂直时,通电导线受力(磁场力)大小
写成等式为:F = BIL ①
式中B为比例系数。
注意:①B与导线的长度和电流的大小无关②在不同的磁场中B的值不同(即使同样的电流导线的受力也不样)
再用类比电场强度的定义方法,从而得出磁感应强度的定义式
【板书2】磁感应强度的大小(表征磁场强弱的物理量)
(1)定义: 在磁场中垂直于磁场方向的通电导线,所受的力(安培力)F跟电流I和导线长度L的乘积IL的比值叫磁感应强度。符号:B
说明:如果导线很短很短,B就是导线所在处的磁感应强度。其中,I和导线长度L的乘积IL称电流元。
(2)定义式: ②
(3)单位:在国际单位制中是特斯特,简称特,符号T. 1T=N/A•m
(4)物理意义:磁感应强度B是表示磁场强弱的物理量.
对B的定义式的理解:
①要使学生了解比值F/IL是磁场中各点的位置函数。换句话说,在非匀强磁场中比值F/IL是因点而异的,也就是在磁场中某一确定位置处,无论怎样改变I和L,F都与IL的乘积大小成比例地变化,比值F/IL跟IL的乘积大小无关。因此,比值F/IL的大小反映了各不同位置处磁场的强弱程度,所以人们用它定义磁场的磁感应强度。还应说明F是指通电导线电流方向跟所在处磁场方向垂直时的磁场力,此时通电导线受到的磁场力最大。
②有的学生往往单纯从数学角度出发,曲公式B= F/IL得出磁场中某点的B与F成正比,与IL成反比的错误结论。
③应强调说明对于确定的磁场中某一位置说,B并不因探测电流和线段长短(电流元)的改变而改变,而是由磁场自身决定的;比值F/IL不变这一事实正反映了所量度位置的磁场强弱程度是一定的。
【例】磁场中放一根与磁场方向垂直的通电导线,它的电流强度是2.5 A,导线长1 cm,它受到的安培力为5×10-2 N,则这个位置的磁感应强度是多大?
解答:
介绍一些磁场的磁感应强度值。(P89表3。2-1)
(三)小结:可继续类比磁场与静电场,小结出以下两个方面:
一是电场力与磁场力在方向上是有差异的。电场力的方向总是与电场强度E的方向相同或相反;而磁场力的方向恒与磁感应强度B的方向垂直。
二是E和B在引入方法上也是有差异的。在电场强度E的引入中,考虑到的是电场中检验电荷所受的力F与检验电荷所带电量q之比;而在磁感应强度B的引入中,考虑的是磁场中检验电流元所受的力F与乘积IL之比。
(四)巩固新:(1)指导学生阅读“科学漫步”。
(2)指导学生完成P90“问题与练习”1-3题
(3)后复习本节内容。
第三节 、几种常见的磁场(1.5时)
一、教学目标
(一)知识与技能
1.知道什么叫磁感线。
2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况
3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。
4.知道安培分子电流假说,并能解释有关现象
5.理解匀强磁场的概念,明确两种情形的匀强磁场
6.理解磁通量的概念并能进行有关计算
(二)过程与方法
通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。
(三)情感态度与价值观
1.进一步培养学生的实验观察、分析的能力.
2.培养学生的空间想象能力.
二、重点与难点:
1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向.
2.正确理解磁通量的概念并能进行有关计算
三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电
四、教学过程:
(一)复习引入
要点:磁感应强度B的大小和方向。
[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么描述呢?
[学生答]磁场可以用磁感线形象地描述.----- 引入新
(老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线描述磁感应强度的大小和方向
(二)新讲解
【板书】1.磁感线
(1)磁感线的定义
在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。
(2)特点:
A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出,回到磁铁的南极,内部是从南极到北极.
B、每条磁感线都是闭合曲线,任意两条磁感线不相交。
C、磁感线上每一点的切线方向都表示该点的磁场方向。
D、磁感线的疏密程度表示磁感应强度的大小
【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。
【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。
②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。
2.几种常见的磁场
【演示】
①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。
②用投影片逐一展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁) (图5)、※辐向磁场(图6)、还有二同名磁极和二异名磁极的磁场。

(1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图1、图2)
(2)电流的磁场与安培定则
①直线电流周围的磁场
在引导学生分析归纳的基础上得出
○直线电流周围的磁感线:是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上.(图3)
○直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.
②环形电流的磁场
○环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直(图4)。
[教师引导学生得]
○环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向.
③通电螺线管的磁场.
○通电螺线管磁场的磁感线:和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极;内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线(图5)
○通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,则大拇指所指的方向就是螺线管的北极(螺线管内部磁感线的方向).
③电流磁场(和天然磁铁相比)的特点:磁场的有无可由通断电控制;磁场的极性可以由电流方向变换;磁场的强弱可由电流的大小控制。
【说明】由于后面的安培力、洛伦兹力、电磁感应与磁感应强度密切相关,几种常见磁场的磁感线的分布是一个非常基本的内容,不掌握好,对后面的学习有很大影响。
3.安培分子电流假说
(1)安培分子电流假说(P92)
对分子电流,结合环形电流产生的磁场的知识及安培定则,以便学生更容易理解“它的两侧相当于两个磁极”,这句话;并应强调“这两个磁极跟分子电流不可分割的联系在一起”,以便使他们了解磁极为什么不能以单独的N极或S极存在的道理。
(2)安培假说能够解释的一些问题
可以用回形针、酒精灯、条形磁铁、充磁机做好磁化和退磁的演示实验,加深学生的印象。举生活中的例子说明,比如磁卡不能与磁铁放在一起等等。
【说明】“假说”,是用说明某种现象但未经实践证实的命题。在物理定律和理论的建立过程中,“假说”,常常起着很重要的作用,它是在一定的观察、实验的基础上概括和抽象出的。安培分子电流的假说就是在奥斯特的实验的启发下,经过思维发展而产生出的。
(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的.
4.匀强磁场
(1)匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。匀强磁场的磁感线是一些间隔相同的平行直线。
(2)两种情形的匀强磁场:即距离很近的两个异名磁极之间除边缘部分以外的磁场;相隔一定距离的两个平行线圈(亥姆霍兹线圈)通电时,其中间区域的磁场P92图3.3-7,图3.3-8。
5.磁通量
(1)定义: 磁感应强度B与线圈面积S的乘积,叫穿过这个面的磁通量(是重要的基本概念)。
(2)表达式:φ=BS
【注意】①对于磁通量的计算要注意条,即B是匀强磁场或可视为匀强磁场的磁感应强度,S是线圈面积在与磁场方向垂直的平面上的投影面积。
②磁通量是标量,但有正、负之分,可举特例说明。
(3)单位:韦伯,简称韦,符号Wb 1Wb = 1T•m2
(4)磁感应强度的另一种定义(磁通密度):即B =φ/S
上式表示磁感应强度等于穿过单位面积的磁通量,并且用Wb/m2做单位(磁感应强度的另一种单位)。所以:1T = 1 Wb/m2 = 1N/A•m
(三)小结:对本节各知识点做简要的小结。并要求学生外按P93【做一做】
巩固练习
1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右.试判定电的正负极.
解析:小磁针N极的指向即为该处的磁场方向,所以在螺线管内部磁感线方向由a→b,根据安培定则可判定电流由c端流出,由d端流入,故c端为电的正极,d端为负极.
注意:不要错误地认为螺线管b端吸引小磁针的N极,从而判定b端相当于条形磁铁的南极,关键是要分清螺线管内、外部磁感线的分布.
2.如图所示,当线圈中通以电流时,小磁针的北极指向读者.试确定电流方向.
电流方向为逆时针方向.
(四)巩固新(1)复习本节内容 (2)阅读“科学漫步”
(3)指导学生完成“问题与练习”1--4

第四节 、磁场对通电导线的作用力(1.5时)
一、教学目标
(一)知识与技能
1、知道什么是安培力。知道通电导线在磁场中所受安培力的方向与电流、磁场方向都垂直时,它的方向的判断----左手定则。知道左手定则的内容,会用左手定则熟练地判定安培力的方向,并会用它解答有关问题.
2、会用安培力公式F=BIL解答有关问题. 知道电流方向与磁场方向平行时,电流受的安培力最小,等于零;电流方向与磁场方向垂直时,电流受的安培力最大,等于BIL.
3、了解磁电式电流表的内部构造的原理。
(二)过程与方法
通过演示、分析、归纳、运用使学生理解安培力的方向和大小的计算。培养学生的间想像能力。
(三)情感态度与价值观
使学生学会由个别事物的个性认识一般事物的共性的认识事物的一种重要的科学方法.并通过对磁电式电流表的内部构造的原理了解,感受物理知识之间的联系。
二、重点与难点:
重点:安培力的方向确定和大小的计算。
难点:左手定则的运用(尤其是当电流和磁场不垂直时,左手定则如何变通使用)。
三、教具:磁铁、电、金属杆、导线、铁架台、滑动变阻器、多媒体。
四、教学过程:
(一)复习引入
让学生回忆在在第二节中通电导线在磁场中受力大小与什么因素有关。
过渡:本节我们将对安培力做进一步的讨论。
(二)新讲解-----第四节 、磁场对通电导线的作用力
安培力:磁场对电流的作用力.
安培力是以安培的名字命名的,因为他研究磁场对电流的作用力有突出的贡献.
1.安培力的方向
【演示】按照P85图3。1—3所示进行演示。
(1)、改变电流的方向,观察发生的现象.
[现象]导体向相反的方向运动.
(2)、调换磁铁两极的位置改变磁场方向,观察发生的现象.
[现象]导体又向相反的方向运动
[教师引导学生分析得出结论]
(1)、安培力的方向和磁场方向、电流方向有关系.
(2)、安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面.(P96图3。4-1)
如何判断安培力的方向呢?
人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律一一左手定则.
左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一个平面内,把手放人磁场中,让磁感线垂直穿人手心,并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向.(如图)。
【说明】左手定则是一个难点,涉及三个物理量的方向,涉及三维空间,而学生的空间想像力还不强,所以教师应引导学生如何将三维图形用二维图形表达(侧视图、俯视图和剖面图等等),还要引导学生如何将二维图形想像成三维图形。---可将右图从侧视图、俯视图和剖面图一一引导学生展示。
*一般情形的安培力方向法则介绍…
结论:电流和磁场可以不垂直,但安培力必然和电流方向垂直,也和磁场方向垂直,用左手定则时,磁场不一定垂直穿过手心,只要不从手背传过就行。
*至于大小法则,如果电流和磁场不垂直,则将磁场进行分解,取垂直分量代入公式即可;从这个角度不难理解——如果电流和磁场平行,那么安培力是多少?[学生]为零。
引导学生分析判断P99第一题
补充练习:判断下图中导线A所受磁场力的方向.
答案:

(垂直于纸面向外)
【演示】平行通电直导线之间的的相互作用(P97图3。4—3)。
引导学生区别安培定则和左手定则,并且用这两个定则去解释“平行通电导线之间的相互作用”这一演示实验,解释时应明白左边的通电导线受到的安培力是右边的通电导线所产生的磁场施加的,反之亦然。
2、安培力的大小
通电导线(电流为I、导线长为L)和磁场(B)方向垂直时,通电导线所受的安培力的大小:F = BIL(最大)
两种特例:即F = ILB(I⊥B)和F = 0(I∥B)。
一般情况:当磁感应强度B的方向与导线成θ角时,有F = ILBsinθ
【注意】在推导公式时,要让学生明确两点:一是矢量的正交分解体现两个分量与原的矢量是等效替代的关系,二是从特殊到一般的归纳的思维方法。(具体推导见P97)
还应该注意的是:尽管公式F=ILB是从公式B=F/IL变形而得的,但两者的物理意义却
有不同。①公式B=F/IL是根据放置于给定磁场中的给定点上的检验电流(电流元)受力情况,确定这一位置的磁场的性质,它对任何磁场中的任何点都是适用的。②公式F=ILB则是在已知磁场性质的基础上,确定在给定位置上给定的一小段通电直导线的受力情况,在中学阶段,它只适用于匀强磁场。教师应该给学生指出:物理公式在作数学的等价变形时,其物理意义和适用范围将会发生变化。这是应用数学知识解决物理问题时所要引起注意的问题,但却往往被人们所忽视。
应该提醒学生注意安培力与库仑力的区别。电荷在电场中某一点受到的库仑力是一定的,方向与该点的电场方向要么相同,要么相反。而电流在磁场中某处受到的磁场力,与电流在磁场中放置的方向有关,电流方向与磁场方向平行时,电流受的安培力最小,等于零;电流方向与磁场方向垂直时,电流受的安培力最大,等于BIL,一般情况下的安培力大于零,小于BIL,方向与磁场方向垂直。
3、磁电式电流表
(1)电流表的组成及磁场分布
请同学们阅读,让学生先看清楚磁铁、铝框、线圈、螺旋弹簧、极靴、指针、铁质圆柱等构,了解它们之中哪些是固定的,哪些是可动的。然后回答.:电流表主要由哪几部分组成的?
数分钟后,教师出示实物投影并演示---图1
[学生答]电流表由永久磁铁、铁芯、线圈、螺旋弹簧、指针、刻度盘等六部分组成.
电流表的组成:永久磁铁、铁芯、线圈、螺旋弹簧、指针、刻度盘.(最基本的是磁铁和线圈)
教师提示注意:a、铁芯、线圈和指针是一个整体;b、蹄形磁铁内置软铁是为了(和铁芯一起)造就辐向磁场;c、观察——铁芯转动时螺旋弹簧会形变。
[实物投影本图2]
[问题]电流表中磁场分布有何特点呢?
[教师讲解]电流表中磁铁与铁芯之间是均匀辐向分布的.
[问题]什么是均匀辐向分布呢?
[教师进一步讲解]所谓均匀辐向分布,就是说所有磁感线的延长线都通过铁芯的中心,不管线圈处于什么位置,线圈平面与磁感线之间的夹角都是零度.该磁场并非匀强磁场,但在以铁芯为中心的圆圈上,各点的磁感应强度B的大小是相等的.
(2)电流表的工作原理-------引导学生弄清楚以下几点:(并请学生自己归纳P98)
①线圈的转动是怎样产生的?
②线圈为什么不一直转下去?
③为什么指针偏转角度的大小可以说明被测电流的强弱?
④如何根据指针偏转的方向确定电路上电流的方向?
⑤使用时要特别注意什么?
(三)对本节要点做简要小结.
(四)巩固新:1、复习本节内容
2、做一做(P98)
3、完成“问题与练习”2、4练习,3作业。

第五节、磁场对运动电荷的作用(1时)
一、教学目标
(一)知识与技能
1、知道什么是洛伦兹力.利用左手定则判断洛伦兹力的方向.
2、知道洛伦兹力大小的推理过程.
3、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算.
4、了解v和B垂直时的洛伦兹力大小及方向判断.理解洛伦兹力对电荷不做功.
5、了解电视显像管的工作原理
(二)过程与方法
通过观察,形成洛伦兹力的概念,同时明确洛伦兹力与安培力的关系(微观与宏观),洛伦兹力的方向也可以用左手定则判断。通过思考与讨论,推导出洛伦兹力的大小公式F=qvBsinθ。最后了解洛伦兹力的一个应用——电视显像管中的磁偏转。
(三)情感态度与价值观
引导学生进一步学会观察、分析、推理,培养学生的科学思维和研究方法。让学生认真体会科学研究最基本的思维方法:“推理—假设—实验验证”。
二、重点与难点:
重点:1.利用左手定则会判断洛伦兹力的方向.
2.掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算.
这一节承上(安培力)启下(带电粒子在磁场中的运动),是本的重点
难点:1.洛伦兹力对带电粒子不做功.
2.洛伦兹力方向的判断.
三、教具:电子射线管、高压电、磁铁、多媒体
四、教学过程:
(一)复习引入
前面我们学习了磁场对电流的作用力,下面思考两个问题:
1.如图判定安培力的方向(让学生上黑板做)
若已知上图中:B=4.0×10-2 T,导线长L=10 cm,I=1 A.求:导线所受的安培力大小?
[学生解答]
解:F=BIL=4×10-2 T×1 A×0.1 m=4×10-3 N
答:导线受的安培力大小为4×10-3 N.
2.什么是电流?
[学生答]电荷的定向移动形成电流.
[教师讲述]磁场对电流有力的作用,电流是由电荷的定向移动形成的,我们会想到:这个力可能是作用在运动电荷上的,而安培力是作用在运动电荷上的力的宏观表现.
[演示实验]观察磁场阴极射线在磁场中的偏转(100页图3。5--1)
[教师]说明电子射线管的原理:
说明阴极射线是灯丝加热放出电子,电子在加速电场的作用下高速运动而形成的电子流,轰击到长条形的荧光屏上激发出荧光,可以显示电子束的运动轨迹,磁铁是用在阴极射线周围产生磁场的,还应明确磁场的方向。
[实验结果]在没有外磁场时,电子束沿直线运动,蹄形磁铁靠近电子射线管,发现电子束运动轨迹发生了弯曲。学生用左手定则判断电子束弯曲方向。
[学生分析得出结论]磁场对运动电荷有作用.------引出新
(二)新讲解
1、洛伦兹力的方向和大小
(1)、洛伦兹力:运动电荷在磁场中受到的作用力.
通电导线在磁场中所受安培力是洛伦兹力的宏观表现.
【说明】可以根据磁场对电流有作用力而对未通电的导线没有作用力,引导学生提出猜想:磁场对电流作用力的实质是磁场对运动电荷的作用力。
[过渡语]运动电荷在磁场中受到洛伦兹力的作用,那么洛伦兹力的方向如何判断呢?
[问题]如图
(2)判定安培力方向.(上图甲中安培力方向为垂直电流方向向上,乙图安培力方向为垂直电流方向向下)
②.电流方向和电荷运动方向的关系.(电流方向和正电荷运动方向相同,和负电荷运动方向相反)
③.F安的方向和洛伦兹力方向关系.(F安的方向和正电荷所受的洛伦兹力的方向相同,和负电荷所受的洛伦兹力的方向相反.)
④.电荷运动方向、磁场方向、洛伦兹力方向的关系.(学生分析总结)
(2)、洛伦兹力方向的判断——左手定则
伸开左手,使大拇指和其余四指垂直且处于同一平面内,把手放入磁场中,让磁感线垂直穿入手心,若四指指向正电荷运动的方向,那么拇指所受的方向就是正电荷所受洛伦兹力的方向;若四指指向是电荷运动的反方向,那么拇指所指的正方向就是负电荷所受洛伦兹力的方向.
【要使学生明确】:正电荷运动方向应与左手四指指向一致,负电荷运动方向则应与左手四指指向相反(先确定负电荷形成电流的方向,再用左手定则判定)。
[投影出示练习题]----“问题与练习”1
(2)试判断下图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向.
[学生解答]
甲中正电荷所受的洛伦兹力方向向上.
乙中正电荷所受的洛伦兹力方向向下.
丙中正电荷所受的洛伦兹力方向垂直于纸面指向读者.
丁中正电荷所受的洛伦兹力的方向垂直于纸面指向纸里
(3)、洛伦兹力的大小
现在我们研究一下洛伦兹力的大小. 通过“思考与讨论”,推导公式F=qvBsinθ时,应先建立物理模型(教材图3.5—3),再循序渐进有条理地推导,这一个过程可放手让学生完成,体现学习的自主性。
也可以通过下面的命题引导学生一一回答。
设有一段长度为L的通电导线,横截面积为S,导线每单位体积中含有的自由电荷数为n,每个自由电荷的电量为q,定向移动的平均速率为v,将这段导线垂直于磁场方向放入磁感应强度为B的磁场中.
[问题]这段导线中电流I的微观表达式是多少?让学生推导后回答。
[学生答]I的微观表达式为I=nqSv
[问题]这段导体所受的安培力为多大?[学生答]F安=BIL
[问题]这段导体中含有多少自由电荷数?
[学生答]这段导体中含有的电荷数为nLS.
[问题]每个自由电荷所受的洛伦兹力大小为多大?
[学生答]安培力可以看作是作用在每个运动上的洛伦兹力F的合力,这段导体中含有的自由电荷数为nLS,所以 F= F安/nLS = BIL/nLS = nqvSLB/nLS =qvB
洛伦兹力的计算公式
(1)当粒子运动方向与磁感应强度垂直时(v┴B) F = qvB
(2)当粒子运动方向与磁感应强度方向成θ时(v∥B) F = qvBsinθ
上两式各量的单位:
F为牛(N),q为库伦(C), v为米/秒(m/s), B为特斯拉(T)
最后,通过“思考与讨论”,说明由洛伦兹力所引起的带电粒子运动的方向总是与洛伦兹力的方向相垂直的,所以它对运动的带电粒子总是不做功的。
2.像管的工作原理
(1)原理 :应用电子束磁偏转的道理
(2)构造 :由电子枪(阴极)、偏转线圈、荧光屏等组成(介绍各部分的作用102页)
在条允许的情况下,可以让学生观察显像管的实物,认清偏转线圈的位置、形状,然后运用安培定则和左手定则说明从电子枪射出的电子束是怎样在洛伦兹力的作用下发生偏转的。
再通过“思考与讨论”( 103页),让学生弄清相关问题。进而介绍电视技术中的扫描现象。
最后让学生回忆 “示波管的原理”,通过对比看看二者的差异。
(三)对本节内容做简要小结
(四)巩固新 (1)复习本节内容
(2)完成“问题与练习” 4、5练习,3作业

第六节、带电粒子在匀强磁场中的运动(2时+1练习)
一、教学目标
(一)知识与技能
1、理解洛伦兹力对粒子不做功.
2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀磁场中做匀速圆周运动.
3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题. 知道质谱仪的工作原理。
4、知道回旋加速器的基本构造、工作原理 、及用途 。
(二)过程与方法
通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题.
培养学生的分析推理能力.
(三)情感态度与价值观
通过对本节的学习,充分了解科技的巨大威力,体会科技的创新历程。
二、重点与难点:
重点:带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用分析有关问题.
难点:1.粒子在洛伦兹力作用下做匀速圆周运动.
2.综合运用力学知识、电磁学知识解决带电粒子在复合场中的问题.
三、教具:洛伦兹力演示仪、感应线圈、电、多媒体等
四、教学过程:
(一)复习引入
[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力]
[问题2]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvBsinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0.]
[问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们学习——带电粒子在匀强磁场中的运动、质谱仪.
(二)新讲解---第六节、带电粒子在匀强磁场中的运动
【演示】先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。后进行实验.(并说明相关问题104-105页)
教师进行演示实验.
[实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形.
[教师引导学生分析得出结论]
当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动.
带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态).
一是要明确所研究的物理现象的条----在匀强磁场中垂直于磁场方向运动的带电粒子。二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)
[出示投影]
①.电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受到垂直于速度方向的洛伦兹力的作用.)
②.洛伦兹力对电子的运动有什么作用?(.洛伦兹力只改变速度的方向,不改变速度的大小)
③.有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离开磁场方向垂直的平面)
④.洛伦兹力做功吗?(洛伦兹力对运动电荷不做功)
1.带电粒子在匀强磁场中的运动
(1)、运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功.
【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。
通过“思考与讨论”( 105页),使学生理解带电粒子在匀强磁场中做匀速圆周运动,的轨道半径r和周期T与粒子所带电量、质量、粒子的速度、磁感应强度有什么关系。
[出示投影]
一为带电量q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?
[问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力]
[问题2]向心力的计算公式是什么?[F=mv2/r]
[教师推导]粒子做匀速圆周运动所需的向心力F=m 是由粒子所受的洛伦兹力提供的,所以 qvB=mv2/ r由此得出r= T= 可得T=
(2)、轨道半径和周期
带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式.
1、轨道半径r = 2、周期T =2πm/ qB
【说明】:
(1)轨道半径和粒子的运动速率成正比.
(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关.
【讨论】:在匀强磁场中如果带电粒子的运动方向不和磁感应强度方向垂直,它的运动轨道是什么样的曲线?
分析:当带电粒子的速度分别为垂直于B的分量v1和平行于B的分量v2,因为v1和B垂直,受到洛伦兹力qv1B,此力使粒子q在垂直于B的平面内做匀速圆周运动,v1和B平行,不受洛伦兹力,故粒子在沿B方向上做匀速曲线运动,可见粒子的运动是一等距螺旋运动.
再用洛伦兹力演示仪演示
[出示投影本例题]
如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场,然后让粒子垂直进入磁感应强度为B的磁场中,最后打到底片D上.
(1)粒子进入磁场时的速率。
(2)求粒子在磁场中运动的轨道半径。
解:(1)粒子在S1区做初速度为零的匀加速直线运动.由动能定理知,粒子在电场中得到的动能等于电场对它所做的功,即
由此可得v= .
(2)粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供,即qvB=m
所以粒子的轨道半径为 r=mv/qB=
[教师讲解]r和进入磁场的速度无关,进入同一磁场时,r∝ ,而且这些个量中,u、B、r可以直接测量,那么,我们可以用装置测量比荷或算出质量。
例题在处理上,可以让学生自己处理,教师引导总结。为了加深对带电粒子在磁场中的运动规律的理解,可以补充例题和适量的练习。注意:在解决这类问题时,如何确定圆心、画出粒子的运动轨迹、半径及圆心角,找出几何关系是解题的关键。
例题给我们展示的是一种十分精密的仪器------质谱仪
补充例题: 如图所示,半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力),从A点以速度v0垂直磁场方向射入磁场中,并从B点射出,已知∠AOB=120°,求该带电粒子在磁场中运动的时间。
分析:首先通过已知条找到 所对应的圆心O′,画出粒子的运动轨迹并画出几何图形。
解:设粒子在磁场中的轨道半径为R,粒子的运动轨迹及几何图形如图所示。
粒子在磁场中做匀速圆周运动的向心力由洛伦兹力提供,
有qvB=mv2/R ①
由几何关系有:R = r tan60º ②
粒子的运动周期T =2πR/v0 ③
由图可知θ=60°,得电粒子在磁场中运动的时间 t = T/6 ④
联立以上各式解得:t= rπ/3v0

(3)、质谱仪
阅读及例题,回答以下问题:
1.试述质谱仪的结构.
2.试述质谱仪的工作原理.
3.什么是同位素?
4.质谱仪最初是由谁设计的?
5.试述质谱仪的主要用途.
阅读后学生回答:
1.质谱仪由静电加速极、速度选择器、偏转磁场、显示屏等组成.
2.电荷量相同而质量有微小差别的粒子,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线,每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量.
3.质子数相同而质量数不同的原子互称为同位素.
4.质谱仪最初是由汤姆生的学生阿斯顿设计.
5.质谱仪是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.---
----(1时)
【过渡语】先从研究物质微观结构的需要出发提出怎样大量产生高能带电粒子的问题,从而引出早期使用的加速器——静电加速器
2.回旋加速器
(1)直线加速器
①加速原理:利用加速电场对带电粒子做正功使带电的粒子动能增加,即qU =ΔEk
②直线加速器的多级加速:教材图3.6—5所示的是多级加速装置的原理图,由动能定理可知,带电粒子经N级的电场加速后增加的动能,ΔEk=q(U1+U2+U3+U4+…Un)
③直线加速器占有的空间范围大,在有限的空间内制造直线加速器受到一定的限制。
(2)回旋加速器
①由美国物理学家劳伦斯于1932年发明。
②其结构教材图3.6—6所示。核心部为两个D形盒(加匀强磁场)和其间的夹缝(加交变电场)
③加速原理:通过“思考与讨论”让学生自己分析出带电粒子做匀速圆周运动的周期公式T = 2πm/q B,明确带电粒子的周期在q、m、B不变的情况下与速度和轨道半径无关,从而理解回旋加速器的原理。
在学生思考之后,可作如下的解释:如果其他因素(q、m、B)不变,则当速率v加大时,由r=mv/qB得知圆运动半径将与v成正比例地增大,因而圆运动周长 也将与v成正比例地增大,因此运动一周的时间(周期)仍将保持原值。
最后提到了回旋加速器的效能(可将带电粒子加速,使其动能达到25 eV~30 eV),为狭义相对论埋下了伏笔。
老师再进一步归纳各部的作用:(如图)
磁场的作用:交变电场以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下做匀速圆周运动,其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D形盒都运动相等的时间(半个周期)后平行电场方向进入电场加速。
电场的作用:回旋加速器的的两个D形盒之间的夹缝区域存在周期性变化的并垂直于两个D形盒正对截面的匀强电场,带电粒子经过该区域时被加速。
交变电压的作用:为保证交变电场每次经过夹缝时都被加速,使之能量不断提高,须在在夹缝两侧加上跟带电粒子在D形盒中运动周期相同的交变电压。
带电粒子经加速后的最终能量:(运动半径最大为D形盒的半径R)
由R=mv/qB有 v=qBR/m 所以最终能量为 Em=mv2/2 = q2B2R2/2m
讨论:要提高带电粒子的最终能量,应采取什么措施?(可由上式分析)
例:1989年初,我国投入运行的高能粒子回旋加速器可以把电子的能量加速到2.8GeV;若改用直线加速器加速,设每级的加速电压为U =2.0×105V,则需要几级加速?
解:设经n级加速,由neU=E 有 n=E/eU=1.4×104(级)
(三)对本节要点做简要小结.
(四)巩固新:1、复习本节内容 2、做一做(P98)
3、完成“问题与练习”2、4练习,3作业。





本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/37082.html

相关阅读:3.1 我们周围的磁现象、3.2 认识磁场 学案(粤教版选修3-1)