不等式

编辑: 逍遥路 关键词: 高二 来源: 高中学习网




不等式小结与复习(1)
目的:
1.掌握常用基本不等式,并能用之证明不等式和求最值;
2.掌握含绝对值的不等式的性质;
3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式.学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关
过程:
一、复习引入:本知识点
二、讲解范例:几类常见的问题
(一)含参数的不等式的解法
例1解关于x的不等式 .
例2解关于x的不等式 .
例3解关于x的不等式 .
例4解关于x的不等式
例5 满足 的x的集合为A;满足 的x
的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若A∩B为仅含一个元素的集合,求a的值.
(二)函数的最值与值域
例6 求函数 的最大值,下列解法是否正确?为什么?
解一: ,∴
解二: 当 即 时,

例7 若 ,求 的最值。
例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.
例9 设 且 ,求 的最大值
例10 函数 的最大值为9,最小值为1,求a,b的值。

三、作业:
1.
2. , 若 ,求a的取值范围
3.
4.

5.当a在什么范围内方程: 有两个不同的负根
6.若方程 的两根都对于2,求实数m的范围
7.求下列函数的最值:
1
2
8.1 时求 的最小值, 的最小值
2设 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求证: 的最小值为3
10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和
高各取多少时,用料最省?(不计加工时的损耗及接缝用料)




本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/40238.html

相关阅读:高二数学数列小结

閻楀牊娼堟竟鐗堟閿涙碍婀伴弬鍥у敶鐎瑰湱鏁辨禍鎺曚粓缂冩垹鏁ら幋鐤殰閸欐垼纭€閻氼噯绱濈拠銉︽瀮鐟欏倻鍋f禒鍛敩鐞涖劋缍旈懓鍛拱娴滄亽鈧倹婀扮粩娆庣矌閹绘劒绶垫穱鈩冧紖鐎涙ê鍋嶇粚娲?閺堝秴濮熼敍灞肩瑝閹枫儲婀侀幍鈧張澶嬫綀閿涘奔绗夐幍鎸庡閻╃ǹ鍙у▔鏇炵伐鐠愶絼鎹㈤妴鍌氼洤閸欐垹骞囬張顒傜彲閺堝绉圭€氬本濡辩悮顓濋暅閺夛拷/鏉╂繃纭舵潻婵婎潐閻ㄥ嫬鍞寸€圭櫢绱濈拠宄板絺闁線鍋栨禒鎯板殾 4509422@qq.com 娑撶偓濮ら敍灞肩缂佸繑鐓$€圭儑绱濋張顒傜彲鐏忓棛鐝涢崚璇插灩闂勩們鈧拷