2012年高二上册数学(文科)寒假作业(含答案)

编辑: 逍遥路 关键词: 高二 来源: 高中学习网




作业(10)
1. 已知椭圆的长轴长是短轴长的2倍,则离心率等于
2. P是双曲线 上任一点, 是它的左、右焦点,且 则 =________
3.直线y=x+1被椭圆 所截得的弦的中点坐标是
4.虚轴长为12,离心率为 的双曲线标准方程为
5. 点P是抛物线y =4x上一动点,则点P到点A(0,-1)的距离与P到直线x=-1的距离和的最小值是
6. 椭圆的左右焦点分别为 ,椭圆上动点A满足 ,则椭圆的离心率的取值范围为
7. 已知A(1,0),Q为椭圆 上任一点,求AQ的中点的轨迹方程。

8.过点Q(4,1)作抛物线y 的弦AB,若AB恰被Q平分,求AB所在的直线方程.

作业(11)
1.抛物线 的准线方程是 ( )
A. B. C. D.
2.已知两点 、 ,且 是 与 的等差中项,则动点 的轨迹方程是 ( )
A. B. C. D.
3.抛物线y=x2到直线 2x-y=4距离最近的点的坐标是 ( )
A. B.(1,1) C. D.(2,4)
4. 抛物线y=ax 的准线方程为y=1,则抛物线实数a=
5. 是椭圆 上的点, 、 是椭圆的两个焦点, ,则 的面积等于 .
6.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米。
7. 如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是
8.双曲线 的中心在原点,右焦点为 ,渐近线方程为 .
(1)求双曲线 的方程;(2)设直线 : 与双曲线 交于 、 两点,问:当 为何值时,以 为直径的圆过原点;


作业(12)
1.过抛物线 的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,如果x1+x2=6,则AB的长是( ) A.10B.8 C.6D.4
2.已知F1、F2是双曲线 的两个焦点,为双曲线上的点,若
F1⊥F2,∠F2F1 = 60°,则双曲线的离心率为( )
A. B. C. D.
3.抛物线y=- 的焦点坐标为
4. 过点(2,4)与抛物线只有一个公共点的直线有 条
5. 已知B、C 是两定点,且 =6, 的周长为16则顶点A的轨迹方程
6.与椭圆 有共同的焦点,且过点 的双曲线的方程为
7.一个动圆与已知圆Q : 外切,与圆 内切,试求这个动圆圆心的轨迹方程。

8.设 两点在抛物线 上, 是AB的垂直平分线,(1)当且仅当 取何值时,直线 经过抛物线的焦点F?证明你的结论;(2)当 时,求直线 的方程.

作业(13)
1.抛物线 与直线 交于 、 两点,其中点 的坐标为 ,设抛物线的焦点为 ,则 等于( )
A.7B. C.6D.5
2.直线 是双曲线 的右准线,以原点为圆心且过双曲线的顶点的圆,被直线 分成弧长为2 : 1的两段圆弧,则该双曲线的离心率是 ( )
A.2B. C. D.
3.已知曲线 与其关于点 对称的曲线有两个不同的交点 和 ,如果过这两个交点的直线的倾斜角是 ,则实数 的值是 ( )
A.1 B. C.2 D.3
4.方程 所表示的曲线是 ( )
A. 双曲线 B. 抛物线 C. 椭圆 D.不能确定
5. 对于曲线C∶ =1,下面正确命题的序号为_____________.
①由线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k<
6. 已知椭圆 的两个焦点分别为 ,点P在椭圆上,且满足 , ,则该椭圆的离心率为
7.已知双曲线与椭圆 共焦点,且以 为渐近线,求双曲线方程.

8.已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(1)求动圆圆心的轨迹的方程;(2)设过点P,且斜率为- 的直线与曲线相交于A、B两点。
问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由。

作业(14)
1.若抛物线 上一点 到准线的距离等于它到顶点的距离,则点 的坐标为( )
A. B. C. D.
2.若点 的坐标为 , 是抛物线 的焦点,点 在抛物线上移动时,使 取得最小值的 的坐标为 ( )
A. B. C. D.
3.直线 与双曲线 的右支交于不同的两点,则 的取值范围是( )
A.( ) B.( ) C.( ) D.( )
4.抛物线 上两点 、 关于直线 对称,且 ,则 等于( ) A. B. C. D.
5.椭圆 的一个焦点为F ,点P在椭圆上,如果线段PF 的中点在y轴上,那么点的纵坐标是
6. 若点O和点F分别为椭圆 中心和左焦点,点P为椭圆上的任意一点,则 的最大值为
7.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线 的焦点,离心率等于 .直线 与椭圆C交于 两点.(1)求椭圆C的方程;(2) 椭圆C的右焦点 是否可以为 的垂心?若可以,求出直线 的方程;若不可以,请说明理由.

作业(15)
1.一个物体的运动方程为 其中 的单位是米, 的单位是秒,那么物体在 秒末的瞬时速度是( )
A. 米/秒 B. 米/秒 C. 米/秒 D. 米/秒
2.函数 的递增区间是( )
A. B. C. D.
3. ,若 ,则 的值等于( )
A. B. C. D.
4.函数 在一点的导数值为 是函数 在这点取极值的( )
A.充分条件 B.必要条件 C.充要条件 D.必要非充分条件
5.函数 在区间 上的最小值为_______________
6.曲线 在点 处的切线倾斜角为__________;
7.曲线 在点 处的切线的方程为_______________
8.设函数 , .(1)试问函数 能否在 时取得极值?说明理由;(2)若 ,当 时, 与 的图象恰好有两个公共点,求 的取值范围.

作业(16)
1. 若函数 ,则     .
2. 函数 的递减区间是     .
3.曲线 在点(-1,-3)处的切线方程是
4.函数 ,已知 在 时取得极值,则 =
5.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则
f2013(x)=
6. 函数 的定义域为开区间 ,导函数 在 内的图象如图所示,则函数 在开区间 内有极小值点 个
7. 统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y= (0<x≤120).已知甲、乙两地相距100千米。(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

8.已知a>0,函数f(x)=lnx-ax2,x>0 (1)求f(x)的单调区间;
(2)当a=18时,证明:存在x0∈(2,+∞),使f(x0)=f32;

作业(17)
1.设函数f(x)= +lnx 则 ( )
A.x= 为f(x)的极大值点 B.x= 为f(x)的极小值点
C.x=2为 f(x)的极大值点 D.x=2为 f(x)的极小值点
2.函数y= x2 ?x的单调递减区间为 ( )
(A)( 1,1] (B)(0,1] (C.)[1,+∞) (D)(0,+∞)
3.曲线y=x(3lnx+1)在点 处的切线方程为
4. 曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为 .
5. 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点,N,则当N达到最小时t的值为
6. 若a>0,b>0,函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于
7.设定义在(0,+ )上的函数 (1)求 的最小值;
(2)若曲线 在点 处的切线方程为 ,求 的值。

8.已知函数 在 处取得极值为
(1)求a、b的值;(2)若 有极大值28,求 在 上的最大值.

作业(18)
1.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为 (  )
A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)
2.曲线y=ex在点A(0,1)处的切线斜率为 (  )
A.1 B.2 C.e D.1e
3.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是 (  )
A.-9 B.-3 C.9 D.15
4.设曲线 在点(1, )处的切线与直线 平行,则
A.1 B. C. D.
5.直线 是曲线 的一条切线,则实数
6. 如图,函数 的图象是折线段 ,其中 的坐标分别
为 ,则 ;
7.设f(x)=ex1+ax2,其中a为正实数.(1)当a=43时,求f(x)的
极值点;(2)若f(x)为R上的单调函数,求a的取值范围.


8.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

作业(10)
1. 2. 9 3.(- ) 4. 5.
6. [ ) 7. 8. 点差法:4x-y-15=0

作业(11)
1-3 BCB 4. - 5. 6. 7.
8.解:(1)易知 双曲线的方程是 .
(2)① 由 得 ,
由 ,得 且 .
设 、 ,因为以 为直径的圆过原点,所以 ,
所以 . 又 , ,
所以 ,
所以 ,解得 .

作业(12)
1.B 2. D 3. (0,- ) 4. 2 5. 6. 7.
8解:(1)∵抛物线 ,即 ,∴焦点为
直线 的斜率不存在时,显然有
直线 的斜率存在时,设为k,截距为b,即直线 :y=kx+b,由已知得:


即 的斜率存在时,不可能经过焦点 .
所以当且仅当 =0时,直线 经过抛物线的焦点F.
(2)当 时,直线 的斜率显然存在,设为 :y=kx+b
则由(1)得:
  
所以,直线 的方程为 ,即 .


作业(13)
1-4 AACA 5.③④ 6. 7.
8.解:(1)依题意,曲线是以点P为焦点,直线l为准线的抛物线,所以曲线的方程为y2=4x.
(2)由题意得,直线AB的方程为y=- (x-1).
由 消y得3x2-10x+3=0,解得x1= ,x2=3.
所以A点坐标为( ),B点坐标为(3,-2 ),
AB=x1+x2+2= .假设存在点C(-1,y),使△ABC为正三角形,则BC=AB且AC=AB,即

由①-②得42+(y+2 )2=( )2+(y- )2,解得y=- .但y=- 不符合①,所以由①,②组成的方程组无解.
因此,直线l上不存在点C,使得△ABC是正三角形.

作业(14)
1.B 点 到准线的距离即点 到焦点的距离,得 ,过点 所作的高也是中线
,代入到 得 , 新 标 第一网
2.D 可以看做是点 到准线的距离,当点 运动到和点 一样高时, 取得最小值,即 ,代入 得
3.D 有两个不同的正根
则 得
4.A ,且
在直线 上,即

5. + 6. 6
7. 解:(1)设C方程为 ,则b = 1.
∴椭圆C的方程为
(2)假设存在直线 ,使得点 是 的垂心.易知直线 的斜率为 ,从而直线 的斜率为1.设直线的方程为 ,代入椭圆方程并整理,可得
.
设 ,则 , .
于是

解之得 或 .
当 时,点 即为直线 与椭圆的交点,不合题意.
当 时,经检验知 和椭圆相交,符合题意.
所以,当且仅当直线 的方程为 时, 点 是 的垂心

作业(15)
1.C
2.C 对于任何实数都恒成立
3.D
4.D 对于 不能推出 在 取极值,反之成立
5.0
得 而端点的函数值 ,得
6.
7.
8.解:

单调递增极大值
单调递减极小值
单调递增

与 的图象恰好有两个公共点,等价于 的图象与直线 恰好有两个交点 或
作业(16)
1. 2 2. 3. 4. 3 5. cosx 6. 1
7. 解: (1)当x=40时,汽车从甲地到乙地行驶了 小时,
要耗油( .
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(2)当速度为x千米/小时,汽车从甲地到乙地行驶了 设耗油量为h(x)升, h(x)=( )• ,
h’(x)= ,(0<x≤120
令h’(x)=0,得x=80.
当x∈(0,80)时,h’(x)<0,h(x)是减函数;
当x∈(80,120)时,h’(x)>0,h(x)是增函数.
∴当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120)上只有一个极值,所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
8. 解:(1)f′(x)=1x-2ax=1-2ax2x,x∈(0,+∞).令f′(x)=0,解得x=2a2a.当x变化时,f′(x),f(x)的变化情况如下表:
x0,2a2a
2a2a
2a2a,+∞

f′(x)+0-
f(x)?极大值?
所以,f(x)的单调递增区间是0,2a2a,f(x)的单调递减区间是2a2a,+∞.
(2)证明:当a=18时,f(x)=lnx-18x2.由(1)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令g(x)=f(x)-f32.由于f(x)在(0,2)内单调递增,故f(2)>f32,即g(2)>0.
取x′=32e>2,则g(x′)=41-9e232<0.
所以存在x0∈(2,x′),使g(x0)=0,即存在x0∈(2,+∞),使f(x0)=f32.
(说明:x′的取法不惟一,只要满足x′>2,且g(x′)<0即可.)


作业(17)
1. D ,令 ,则 ,
当 时 ,当 时 ,所以 为 极小值点,故选D
2. B
3. 函数的导数为 ,所以在 的切线斜率为 ,所以切线方程为 ,即 .
4. 5. 6. 9
7.解(1) ,
当且仅当 时, 的最小值为
(2)由题意得: , ①
, ② 由①②得: 。
8.解(1)因 故 由于 在点 处取得极值
故有 即 ,化简得 解得
(2)由(1)知 ,
令 ,得 当 时, 故 在 上为增函数;当 时, 故 在 上为减函数
当 时 ,故 在 上为增函数。
由此可知 在 处取得极大值 , 在 处取得极小值 由题设条件知 得
此时 ,
因此 上 的最小值为
作业(18)
1. C 令f′(x)=2x-2-4x=2x-2x+1x>0,又∵f(x)的定义域为{xx>0},
∴(x-2)(x+1)>0(x>0),解得x>2
2. A  y′=ex,故所求切线斜率k=exx=0=e0=1.
3. C因为y′=3x2,所以k=y′x=1=3,所以过点P(1,12)的切线方程为
y-12=3(x-1),即y=3x+9,所以与y轴交点的纵坐标为9.
4. A ,于是切线的斜率 ,∴有
5. ,令 得 ,故切点为 ,代入直线方程,得 ,所以 。
6. 2 -2
7.解: f′(x)=ex1+ax2-2ax1+ax22.①
(1)当a=43时,若f′(x)=0,则4x2-8x+3=0, 解得x1=32,x2=12.结合①可知
x-∞,12
12
12,32
32
32,+∞

f′(x)+0-0+
f(x)?单调递增极大值?单调递减极小值?单调递增
所以,x1=32是极小值点,x2=12是极大值点.
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
8.解:(1)因为x=5时,y=11,所以a2+10=11,a=2.
(2)由(1)可知,该商品每日的销售量
y=2x-3+10(x-6)2. 所以商场每日销售该商品所获得的利润
f(x)=(x-3)2x-3+10x-62=2+10(x-3)(x-6)2,3<x<6.
从而f′( x)=10x-62+2x-3x-6=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x(3,4)4(4,6)
f′(x)+0-
f(x)单调递增极大值42单调递减
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于42.
答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.




本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/48301.html

相关阅读:2013年高二数学上册期中调研测试题(含答案)

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼槮闁搞劍绻冮妵鍕冀椤愵澀鏉梺閫炲苯澧柛鐔告綑閻g兘濡歌閸嬫挸鈽夊▍顓т簼缁傚秵娼忛妸褏鐦堥梺姹囧灲濞佳冪摥闂備胶枪閿曘倝顢氶鐘愁潟闁圭偓鍓氬ḿ鈺呮煠閸濄儲鏆╅柛妯哄船椤啴濡堕崱妤€顫囬梺绋匡攻濞茬喎顕i幖浣哥睄闁割偆鍠撻崢钘夆攽閻樼粯娑ф俊顐g洴瀹曟椽鏁愭径瀣幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁哄苯绉烽¨渚€鏌涢幘璺烘灈妤犵偛鍟抽ˇ宕囩磼缂佹ḿ绠炵€规洝鍩栭ˇ鐗堟償閿濆倹锛堥梻鍌氬€风粈渚€骞栭銈囩煓濞撴埃鍋撶€规洏鍨虹粋鎺斺偓锝庡亜娴滄姊洪棃娑辨濠碘€虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙濞寸姍鍥ㄧ厵闁告劕寮堕崳娲煏閸パ冾伃闁轰焦鍔欏畷銊╊敇閻樿崵宕滅紓鍌氬€烽懗鍓佸垝椤栨粍宕查柛顐犲劚閺勩儵鏌嶈閸撴岸濡甸崟顖氱鐎广儱娴傚Σ顔碱渻閵堝棙绀嬪ù婊冪埣瀵鍩勯崘銊х獮闁诲函缍嗘禍鐐寸缁嬫娓婚柕鍫濆暙閸旀粎绱掔拠鑼妞ゎ偄绻愮叅妞ゅ繐瀚鎰版⒑缂佹ê濮堢憸鏉垮暞娣囧﹨顦规慨濠冩そ瀹曘劍绻濋崒姘兼綂闂備礁鎼幊蹇曞垝瀹€鍕厺闁规儳顕々鐑芥倵閿濆骸浜愰柟閿嬫そ閺岋綁鎮╅崣澶嬫倷閻庢鍠栭悥濂哥嵁閹达附鏅插璺侯儑閸樼敻姊洪幆褎绂嬮柛瀣噽娴滄悂顢橀姀锛勫弳闂佸搫娲﹂敋闁诲繑鐓¢弻锛勪沪閼恒儺妫炲銈嗘尭閵堢ǹ鐣烽妸鈺婃晩闂佹鍨版禍鐐亜閹烘垵顏柣鎾寸☉椤法鎹勯悮鏉戝婵犫拃鍕伌闁哄本鐩顒勫锤濡も偓瀵即姊洪棃娑欘棞闁硅櫕锚椤曪絾绻濆顑┿劑鏌ㄩ弮鈧崕鎶界嵁瀹ュ鈷掑ù锝堟鐢盯鏌涢妸锕€鍔堕柟绛嬪亞缁辨帡鎮欓鈧粈鍐偓瑙勬礈閺佺ǹ危閹版澘绠虫俊銈咃攻閺呪晠姊洪崗闂磋埅闁稿酣浜跺鍐参旈崘顏嗭紳婵炶揪绲肩划娆撳传濞差亝鐓欓柣鐔哄閹兼劙鏌i敐鍛Щ妞ゎ偅绮撻崺鈧い鎺戝閺勩儵鏌嶉埡浣告殲濠殿垱鎸冲鍫曟倷闂堟侗鏆梺绋款儏閹虫ê顫忔繝姘<婵炲棙鍔楅妶鏉库攽閳╁啨浠犻柛鏃€鍨甸~蹇涙寠婢舵ê鎮戞繝銏f硾閿曪箓鏁嶅▎蹇婃斀闁绘ḿ绮☉褎銇勯幋婵囨悙闁伙絽鐏氱粭鐔煎焵椤掑嫬绠栨俊銈呮噺閺呮煡骞栫划鐟板⒉闁诲繐绉瑰铏圭矙濞嗘儳鍓炬繛瀛樼矋缁诲牊淇婇悽绋跨妞ゆ牗鑹鹃崬銊╂⒑闂堟丹娑氫沪閻愵剦鍟囨繝纰夌磿閸嬫垿宕愰弽顓炶摕闁靛ǹ鍎嶅ú顏嶆晣闁绘垵妫欑紞搴♀攽閻愬弶鈻曞ù婊勭矊椤斿繐鈹戦崱蹇旀杸闂佺粯蓱瑜板啴顢旈鍫熺厱闁挎繂楠稿顔芥叏婵犲啯銇濇鐐寸墵閹瑩骞撻幒婵囩秱闂傚倷鑳舵灙妞ゆ垵妫濆畷婵嬪即閵忕姷鍙€婵犮垼鍩栭崝鏍磻閵娧呯<閻庯綆鍘界涵鍫曟煕閺冩挾鐣辨い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑矗閸愵喖绠栭柨鐔哄У閸嬪嫰鏌涘☉姗堝伐鐎殿喖鐏濋埞鎴﹀煡閸℃浠梺鍛婎焼閸涱喗娈伴梺鐓庢憸閺佸摜绮绘ィ鍐╃厱婵炴垵宕弸銈夋煙閸愬弶鍣界紒杈ㄥ笚濞煎繘濡搁妷褏鎳栨繝鐢靛仧閸樠呮崲濡绻嗘慨婵嗙焾濡查箖姊烘导娆戝埌闁靛牏枪椤繑銈︾憗銈勬睏闂佸湱鍎ょ换鍐夐弽銊х瘈闁汇垽娼ф禍褰掓煕鐎n偅灏扮紒缁樼箘閸犲﹥寰勫畝鈧敍鐔兼⒑缁嬭法绠查柨鏇樺灩椤曪綁顢曢敃鈧壕濂告煟閹邦厽缍戝ù鐘层偢閺岋綀绠涢弴鐐版埛闁哄浜滈湁婵犲﹤鎳庢禍楣冩煏閸パ冾伃鐎殿喗娼欒灃闁逞屽墯缁傚秵銈i崘鈹炬嫼闁荤姴娲犻埀顒冩珪閻忓牓姊洪幖鐐茬仾闁绘搫绻濆畷娲閳╁啫鍔呴梺闈涚墕濞层劑寮堕幖浣光拺闁革富鍙€濡炬悂鏌涢妸褍顣肩紒鍌氱Ч楠炲棜顦柡鈧禒瀣厽婵☆垵娅i弸鍐熆鐟欏嫥缂氶柣銉邯楠炲棜顧侀柣鎾炽偢閺岋紕浠︾拠鎻掝瀳闂佸疇顫夐崹鍨暦閸楃儐娼ㄩ柛鈩冿公妤犲繐鈹戦敍鍕杭闁稿﹥鍔欏鎻掆攽鐎n亞顦у┑顔姐仜閸嬫挾鈧鍠涢褔鍩ユ径濞㈢喖鏌ㄧ€e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;婵炴埈婢佺紞鏍煃閸濆嫭鍣洪柍閿嬪灴瀵爼鎮欓弶鎴偓婊勩亜閺傛妯€闁哄矉绻濆畷銊╊敍濮橈絾鐎版俊銈囧Х閸嬫盯宕导鏉戠闁告洦鍘介崑姗€鏌嶉埡浣告灓婵炲吋妫冨缁樻媴閸涘﹥鍎撻柣鐘叉川閸嬨倕鐣峰鈧畷婊嗩槷闁稿鎸诲ḿ蹇涘煛閸愵亷绱抽梻浣呵归張顒勬嚌妤e啫鐒垫い鎺嗗亾闁硅姤绮庨崚鎺楀籍閸噥妫冨┑鐐殿棎濞呮洟鎯勯姘辨殾婵せ鍋撴い銏$懇閹虫牠鍩¢崘鈺冣偓顕€姊婚崒娆愮グ妞ゎ偄顦悾宄邦潨閳ь剟銆佸鎰佹Щ濡炪倖鏌ㄧ换鎰板煘閹达箑鐐婇柕澶堝€楅惄搴ㄦ⒒娴e憡鎯堥柛鐕佸亜鐓ら柕鍫濈墱閺嗛亶姊绘担绛嬪殭閻庢稈鏅滅粚閬嶅传閸曘劍鐎洪梺鍝勬川婵潧鐣烽崣澶岀闁瑰鍋涢悞褰掓煕鐎n偅灏柍钘夘槸閳诲海鈧綆鍓涚粣妤呮⒒娴h銇熼柛妯恒偢椤㈡牠宕ㄧ€涙ḿ鐣冲┑鐘垫暩婵澧濋梺绋款儐閹稿墽妲愰幒妤婃晩闁伙絽鏈崳浼存倵鐟欏嫭绀冩俊鐐扮矙瀹曟椽鍩€椤掍降浜滈柟鍝勭Ч濡惧嘲霉濠婂嫮鐭掗柡宀€鍠栧畷顐﹀礋椤掑顥e┑鐐茬摠缁挾绮婚弽褜娼栭柧蹇撴贡閻瑩鏌涢弽銈傚亾閸愬樊娼梻鍌欒兌椤㈠﹤鈻嶉弴銏犵闁搞儺鍓欓弸渚€鏌涢幇闈涙灈妞ゎ偄鎳橀弻鏇㈠醇濠靛洤娅у銈嗘尵閸樠団€旈崘顔嘉ч柛鈩兦氶幏褰掓⒑缁嬪潡顎楅柛鐔锋健閹箖鎮滈挊澹┿劑鏌曟径鍫濈仾闁哄倵鍋撻梻鍌欒兌缁垶宕濋弴鐑嗗殨闁割偅娉欐径濞惧牚闁告洦鍘鹃鏇㈡煟鎼达絾鏆╅弸顏堟煕濡粯灏﹂柡宀€鍠栭、娑橆潩閸愬樊浼冮梻浣风串缁插墽鎹㈤崼婵堟殾闁绘梻鈷堥弫鍡涙煕鐏炴崘澹樼紒鐘劤缁辨捇宕掑顑藉亾閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓褰掑疾椤忓嫧鏀介柣妯诲墯閸熷繘鏌涢悩宕囧⒌鐎规洦鍨堕獮宥夘敊缁涘缍楅梻浣告贡閸庛倕顫忛悷鎵殾濠㈣埖鍔栭悡锝夌叓閸ャ劎鈻撻柛瀣尭閳藉顫濋崹娑欐暯缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾闁诡垰鐭傚畷鎺戔槈濮樺吋閿ら梻浣稿閸嬪懎煤閺嶎厼鍙婇柕澶嗘櫆閻撴洟鏌¢崶銉ュ闁诲繒濮风槐鎺楀焵椤掑嫬绀冩い蹇撴噹閺嬫垿妫呴銏″婵炲弶绮撻幆宀勫幢濞戞瑧鍘撻悷婊勭矒瀹曟粓鎮㈡總澶嬬稁闂佹儳绻楅~澶屸偓姘哺閺岀喓绱掑Ο杞板垔闂佸憡鏌ㄩˇ杈╂閹惧瓨濯撮柛鎾村絻閸撻亶鏌i姀鈺佺伈缂佺粯绻傞锝夘敃閵堝倸浜鹃柨婵嗛閺嬬喖鏌嶉柨瀣仼缂佽鲸甯為埀顒婄秵閸嬫帡宕曢妷鈺傜厱閹艰揪绱曠粻宕囩磼鏉堛劌绗氱€垫澘瀚换婵嬪磼閵堝棙顔戦梻鍌欑閹诧紕鏁Δ鍐╂殰闁圭儤顨愮紞鏍ㄧ節闂堟侗鍎涢柡浣稿閺岋綁骞囬鍌涙喖闂侀潧娲︾换鍐Φ閸曨垰顫呴柍鈺佸枤濡啴鎮楃憴鍕濞存粠浜滈悾宄邦潨閳ь剟銆侀弮鍫濈妞ゆ巻鍋撻柛鏃€甯″濠氬磼濮橆兘鍋撻幖浣哥9濡炲娴烽惌鍡椼€掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫆闁芥ê顦純鏇㈡⒒娴h櫣銆婇柛鎾寸箞閹柉顦归柟顖氱焸楠炴ḿ绱掑Ο琛″亾閸偆绠鹃柟瀵稿剱娴煎棝鏌熸潏鍓х暠闁活厽顨婇悡顐﹀炊閵娧€濮囬梺缁樻尵閸犳牠寮婚敓鐘茬<婵ê褰夐搹搴ㄦ⒑鐠団€虫灍闁搞劌娼″濠氭晸閻樺弶銇濇繛杈剧悼鏋柍宄邦儔濮婅櫣鎷犻垾铏亶闂佹寧娲忛崹浠嬬嵁閸愩劉鏋庨柟瀵稿仜绾绢垶鏌℃径灞戒户濠⒀勵殜閹牐绠涘☉娆屾嫽婵炶揪缍€濡嫰宕ヨぐ鎺撶厱闁绘ê鍟挎慨澶愭煙楠炲灝鐏茬€规洖銈告俊鐑藉Ψ閵婏附鍟洪梻鍌欒兌缁垰顫忔繝姘偍鐟滄柨鐣峰▎鎾村亹闁绘劖鍨濈花濠氭⒑鐟欏嫬顥愰柡鍛洴閹﹢鍩℃担鍙夋杸濡炪倖妫佹慨銈囩矆閳ь剟姊虹€圭媭娼愰柛銊ユ健楠炲啴鍩¢崪浣规櫇濡炪値鍋掗崢濂杆夊顓犵瘈闁汇垽娼ф禒锕傛煙缁嬫鐓肩€规洘妞藉畷姗€顢欓懖鈺嬬幢闂備礁婀遍崑鎾诲箚鐏炶В鏋斿ù鐘差儐閻撶喖鏌熼柇锕€鐏犻柣銊︽そ瀵偊宕奸妷锔规嫼缂備緡鍨卞ú姗€寮惰ぐ鎺撶厱閻庯綆鍋呯亸顓熴亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閸愵亝鍣梻浣筋嚙鐎涒晠宕欒ぐ鎺戠婵炴垯鍨归悞鍨亜閹哄秵绁板瑙勆戦妵鍕晜鐠囪尙浠搁梺鐐藉劵婵″洭骞戦崟顖毼╅柨鏇楀亾缁剧虎鍨辩换娑㈠箻閺夋垵姣堥梺鎼炲妺閸楀啿鐣峰⿰鍕秶闁冲搫鍟伴敍婵嬫⒑缁嬫寧婀版慨妯稿姀閳敻姊绘担鍛靛綊顢栭崱娑樼闁搞儜灞剧稁缂傚倷鐒﹁摫濠殿垱鎸抽弻锝夋偄閻撳簼鍠婇梺鎼炲€曢鍥╂閹惧瓨濯撮柛鎾村絻閸撻亶姊洪幖鐐插濠⒀冩捣缁辨捇骞樼€靛壊娴勯柣搴秵娴滅偤鎯堥崟顖涒拺缂佸瀵у﹢鎵磼椤斿ジ鍙勯柟顕€绠栭幊婊堟偨閻㈢數妲囬梻渚€娼ф蹇曞緤娴犲鍋傞柟鎵閻撴洟鏌¢崘锝呬壕濠电偛寮剁划搴ㄥ礆閹烘挾绡€婵﹩鍎甸妸鈺傜厓闁告繂瀚埀顒€顭峰畷銏ゆ偨閻㈢數锛濇繛杈剧到婢瑰﹪宕曡箛鏃傜缁绢參顥撶弧鈧銈冨灪閹告瓕鐏冩繛杈剧到閸氣偓缂併劌顭烽弻鐔煎礂閼测晜娈梺鎼炲妼閹碱偊鎮惧畡鎵殕闁告洦鍓涢崢鎼佹倵閸忓浜鹃柣搴秵閸撴稖鈪甸梻鍌欒兌绾爼寮查鍡樺床婵犻潧妫涢弳锔戒繆閵堝懏鍣洪柡鍛箞閺屽秷顧侀柛鎾寸〒濡叉劙鎮欑€靛摜鐦堥梺绋挎湰缁秴鈻撴ィ鍐┾拺闁圭ǹ娴风粻鎾绘煟濡や胶鐭婇崡鍗炩攽閻樺磭顣查柍閿嬪灩閳ь剝顫夊ú鏍洪妸褎鏆滄繛鎴炵懁缁诲棙銇勯幇鈺佺仼闁哄棙鐟﹂妵鍕即椤忓棛袦濡ょ姷鍋為敃銏ゃ€佸▎鎾村癄濠㈣泛妫楁禍楣冩煟閹达絽袚闁绘挻娲熼悡顐﹀炊閵婏箑闉嶉梺鐟板级閹倿寮婚敐澶樻晣闁绘洑鐒﹂悿浣糕攽椤旂》鏀绘俊鐐扮矙楠炲﹪鏁撻悩鍙傃囨煕濞戞ɑ瀚呯紓宥勭窔瀵鈽夐姀鐘愁棟闂佺粯鍔曞鍫曞闯閸︻厾纾奸棅顒佸絻閳ь剚娲熼崺鐐哄箣閿曗偓绾惧吋绻濊閹哥ǹ锕㈡潏鈺佸灊濠电姵鑹鹃拑鐔兼煏婢舵稑顩柛姗嗕邯濡懘顢曢姀鈩冩倷濡炪倖鍨甸幊姗€宕洪埀顒併亜閹哄秶鍔嶇紒鈧径宀€纾肩紓浣姑崫鐑樻叏婵犲嫮甯涢柟宄版嚇瀹曘劑妫冨☉姘毙ㄩ悗娈垮枤閺佸銆佸Δ鍛妞ゆ劑鍊ゅΣ閬嶆⒒娴h棄鍚归柛鐘冲姍瀹曟娊寮堕幊銊︽そ椤㈡棃宕熼獮顖氬枤閻斿棝鎮规潪鎷岊劅闁稿孩鍨块弻娑樜熼崫鍕煘闂佸疇顫夐崹鍧楀箖濞嗘挸鐭楀鑸瞪戦敍渚€姊绘担鍛婂暈婵﹦鎳撶叅闁绘梻鍘х粻鏍ㄦ叏濡炶浜鹃梺绯曟櫔缁绘繂鐣烽幒妤€围闁糕檧鏅涢弲顒勬⒒閸屾瑨鍏岀紒顕呭灦瀹曟繈寮撮悜鍡楁闂佸壊鍋呭ú鏍玻濡や椒绻嗘い鏍ㄦ皑濮g偤鏌涚€n偅灏柍缁樻崌瀹曞綊顢欓悾灞煎闂傚倷娴囧銊х矆娓氣偓閳ワ箓鎮滈挊澹┿儱霉閿濆牆鈧粙寮崼婵嗙獩濡炪倖鎸炬刊瀵告閸欏绡€闁汇垽娼у瓭闂佹寧娲忛崐婵嗙暦椤栫偛绠紒娑橆儐閺呪晜绻濋姀锝呯厫闁告梹鐗犻崺娑㈠箳閹炽劌缍婇弫鎰板川椤斿吋娈橀梻浣筋嚃閸ㄤ即鎮ч幘璇茶摕闁挎繂鎲橀弮鍫濈劦妞ゆ巻鍋撻摶鐐寸節闂堟冻鏀绘い銉e€濆缁樻媴缁涘缍堝銈嗘⒐閻楃姴鐣烽弶娆炬僵闁兼悂娼ч崜褰掓⒑閻熸澘鈷旂紒顕呭灦閹繝寮撮姀锛勫弳闂佸搫鍟ù鍌炲吹濞嗘劦娈介柣鎰綑婵秹鏌$仦鍓с€掗柍褜鍓ㄧ紞鍡涘磻閸涱垯鐒婃い鎾跺枂娴滄粍銇勯幇鍓佹偧缂佺姷鍋為妵鍕閳藉棙鐣烽梺鐟板槻閹虫劙骞夐幘顔肩妞ゆ劦鍋傜槐妤佺節閻㈤潧啸闁轰礁鎲¢幈銊╁箻椤旇棄鍓︽繝銏e煐閸旀洖娲块梻浣告啞濞诧箓宕戦崨鏉戠?闁瑰墽绮埛鎺懨归敐鍥╂憘闁搞倕鍟撮弻娑㈡晲鎼粹剝鐝濋悗瑙勬礃婵炲﹪寮幇顓炵窞闁割偅鑹炬禍鎯归敐鍫濃偓浠嬫偄閻戞ê浠掗梺鏂ユ櫅閸燁垶寮堕幖浣光拺閻犲洦褰冮崵杈╃磽瀹ュ懏顥㈢€规洘鍨垮畷銊р偓娑櫭禒濂告⒑閸撴彃浜濇繛鍙夛耿閸╂盯骞掗幊銊ョ秺閺佹劙宕ㄩ鍏兼畼闂備浇顕栭崹浼存偋婵犲洤桅闁告洦鍣Σ鐑芥⒑缁嬫鍎愰柟鐟版搐椤繐煤椤忓懎浠梺鍝勵槹鐎笛囶敊閳ь剟姊绘担鐑樺殌闁搞倖鐗犻獮蹇涙晸閿燂拷/闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫鍐煥閺囨浜鹃梺姹囧€楅崑鎾舵崲濠靛洨绡€闁稿本绋戝▍銈夋倵鐟欏嫭绀冮柣鎿勭節瀵鈽夐姀鐘电杸闂佺ǹ绻愰幗婊堝礄瑜版帗鈷戠紒瀣硶缁犺尙绱掗鑺ュ磳鐎殿喖顭锋俊鍫曞炊閳哄啰鍘梺鑽ゅУ娴滀粙宕濈€n剙鍨濋柛顭戝亞缁犻箖鎮楀☉娅亜鈻撻悩缁樼厱濠电姴鍟版晶閬嶆煙楠炲灝鐏╅柍瑙勫灩閳ь剨缍嗛崑鎺懳涢崘銊㈡斀闁绘劖娼欓悘锕傛偨椤栨粌浠滈柨鏇樺灲瀹曘劑顢樺☉娆愭澑闂備胶绮崝鏍亹閸愵喖绠栭柟杈鹃檮閻撴洟鏌¢崘锝呬壕闂佽崵鍟块弲娑㈩敋閿濆棛绡€婵﹩鍘藉▍婊勭節閵忥絾纭剧拫鈺呮煃閸濆嫭鍣洪柣鎾崇箰椤法鎹勯搹鐟邦暫闂佸憡姊瑰ḿ娆撴箒闂佺粯锚閻即宕戦姀鈩冨弿濠电姴鍟妵婵堚偓瑙勬处閸嬪﹥淇婇悜钘壩ㄩ柕鍫濇处瀹曠喎鈹戦敍鍕杭闁稿﹥鐗曠叅闁挎洖鍊搁惌妤呮煕閹伴潧鏋涢柡鍕╁劦閺屽秷顧侀柛鎾村哺婵$敻宕熼姘鳖唺闂佺硶鍓濋妵鐐寸珶閺囩喓绡€闁汇垽娼цⅴ闂佺ǹ顑嗛幑鍥蓟濞戞鏃堝礃閵娿倖鐫忛梻浣告惈椤戝懐绮旇ぐ鎺戣摕闁哄浄绱曢悿鈧柣搴秵娴滅偞绂掗幆褜娓婚柕鍫濋娴滄繃绻涢崣澶呯細闁瑰箍鍨归埞鎴犫偓锝庡亽濡啫鈹戦悙鏉戠仸闁煎綊绠栬矾闁逞屽墴濮婅櫣鎷犻幓鎺濆妷缂佺偓婢樼粔鎾綖濠靛惟闁宠桨鑳堕崝锕€顪冮妶鍡楃瑨闁稿﹤缍婂畷鐢稿焵椤掑嫭鐓熼幖娣灩閸ゎ剟鏌涘Ο鎭掑仮闁炽儻绠撳畷褰掝敊閵壯冩灈闁诡喒鍓濋幆鏃堟晲閸モ晜鎲f繝鐢靛Х閺佹悂宕戝☉妯滅喐绻濋崘顏嶆锤濠电娀娼ч鍛存偂閺囥垺鐓欓悗鐢登规禍鐓幟瑰⿰鍕煉闁哄瞼鍠栧鍫曞垂椤曞懏娈虹紓浣哄亾瀹曟ê鈻旈弴鐘愁潟闁圭儤顨呯粻娑欍亜閹捐泛娅忔俊顐㈠暣濮婃椽宕崟顒佹嫳缂備礁顑嗛幑鍥春閳ь剚銇勯幒鎴姛缂佸鏁婚弻娑氣偓锝庝簼椤ョ偤鏌¢崨顓犲煟妞ゃ垺顨婂畷鎺戔堪閸滃啰搴婇梻鍌欒兌鏋柡鍫墰缁瑩骞嬪婵嗙秺椤㈡瑧绮电€n偒鍟嶉梻浣虹帛閸旀洖顕i崼鏇€澶愬閳垛晛浜炬繛鍫濈仢閺嬫盯鏌i弽褋鍋㈤柣娑卞櫍楠炲洭顢橀悢宄板Τ婵$偑鍊栭弻銊╁触鐎n亖鏋嶉柨鐕傛嫹 4509422@qq.com 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У濠㈡ǹ鐏冮梺鎸庣箓閹冲酣寮冲▎鎴犳/闁诡垎宀€鍚嬮梺鍝勭灱閸犳牠鐛崱姘兼Ь闂佸湱鏅繛鈧柡灞剧☉閳诲氦绠涢弴鐙€鍟嬮梻浣告惈閺堫剙煤閻旈鏆﹂柣鎾崇岸閺€浠嬫煙闁箑甯ㄧ憸鏂款潖濞差亜浼犻柛鏇ㄥ墮椤庢盯姊洪崨濠冨暗闁哥姵鐗犻悰顕€宕橀…鎴炲缓闂侀€炲苯澧存鐐插暙閳诲酣骞嬮悙鑼紡闂佸搫顦遍崑鐔告櫠濡ゅ懏鍎撻煫鍥ㄦ煣缁诲棝鏌i幇鍏哥盎闁逞屽墯濞叉粓骞戦姀鐘栨梹鎷呮笟顖涢敜婵$偑鍊栫敮鎺楀磹瑜版帪缍栭柡鍥ュ灪閻撴瑩鏌熼鍡楁噺閹插吋绻濆▓鍨仭闁瑰憡濞婂璇测槈濡攱鏂€闂佸憡娲﹂崑鍕叏閵忕媭娓婚柕鍫濇閻撱儲銇勯敃鍌涙锭妞ゎ偄绻橀幖褰掑捶椤撶媴绱叉繝纰樻閸ㄥ磭鍒掗鐐茬?闁规儳澧庣壕钘壝归敐鍕煓闁告繄鍎ょ换娑㈡嚑椤掆偓閺嬫稓鈧娲樺浠嬪春閳ь剚銇勯幒宥夋濞存粍绮撻弻鐔煎传閸曨剦妫炴繛瀛樼矋閸庢娊鍩為幋锔藉亹妞ゆ劦婢€婢规洟姊婚崒娆戣窗闁告挻鐟х划鏃傗偓鐢登归ˉ姘舵煕瑜庨〃鍡涙偂濞嗘挻鍊甸柣銏㈡鐟欏嫮澧″┑锛勫亼閸娿倝宕戦崨顒煎搫螣閸忕厧搴婂┑鐘绘涧椤戝棝藟閸喓绠鹃柟瀛樼箓閼稿綊鏌涢幘鎻掑祮闁哄矉绲鹃幆鏃堝閿濆拋妫熸俊鐐€х紓姘跺础閾忣偂绻嗛柣銏⑶圭粈瀣亜閺嶃劍鐨戞い鏂匡躬濮婃椽鎮烽幍顔芥喖缂備焦妞界粻鏍х暦閹达箑绠婚悹鍥ㄥ絻瀵兘妫呴銏℃悙妞ゆ垵瀚晥婵°倕鎳忛埛鎴︽煕濠靛棗顏い顐畵閺屾稒鎯旈姀銏犲绩閻庤娲橀崝娆忕暦婵傜ǹ鍗抽柣妯诲絻缁插ジ姊绘担瑙勫仩闁稿寒鍨跺畷婵嗩吋閸ワ妇鍓ㄩ梺缁橆殔閻楀嫭绂嶅⿰鍫熺厪濠㈣鍨伴崯鐘诲几閸涘瓨鈷戦柛婵嗗閻掕法绱掗煫顓犵煓闁糕晝鍋ら獮瀣晝閳ь剟鎮欐繝鍥ㄧ厓闁告繂瀚埀顒佹倐瀹曞綊鏌嗗鍡欏幗闁瑰吋鐣崐銈呩缚閹邦厾绠鹃柛娆忣棦椤忓牞缍栨繝闈涱儏鎯熼梺瀹犳〃閼冲爼顢欓崱娑欌拺缂備焦銆掕ぐ鎺濇晪鐟滃繒鍒掓繝姘仺闁告稑锕﹂崢鐢告⒑缂佹ê鐏﹂拑閬嶆煟閹垮嫮绉柡宀€鍠栭、姘跺幢濞嗘嚩婊冣攽椤旂》宸ユい顓炲槻閻g兘骞掗幋顓熷兊濡炪倖鍨煎Λ鍕妤e啯鐓曟繝闈涘閸旀鏌涚€n偅灏い顐g箞婵$兘濡烽妷顔界秵闂佽姘﹂~澶娒哄鈧畷婵嗏枎閹捐泛绁﹂柣搴秵閸犳寮插┑瀣厓鐟滄粓宕滈悢鐓庣畺闁绘劕鎼崹鍌涖亜閹邦喖小缂併劌顭峰娲捶椤撶偛濡洪梺绯曟櫅閿曨亜顕i妸锔剧瘈婵﹩鍘奸埀顒€鐏氶幈銊ノ熼悡搴濆闁诲孩鐔幏锟�