(1)形式一: =2R;
形式二: ; ; ;(角到边的转换)
形式三: , , ;(边到角的转换)
形式四: ;(求三角形的面积)
(2)解决以下两类问题: 1)、已知两角和任一边,求其他两边和一角;(唯一解)
2)、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。
(3)若给出 那么解的个数为:若 ,则无解;若 ,则一解;
若 ,则两解;
2.余弦定理:txjy
(1)形式一: , ,
形式二: , , ,(角到边的转换)
(2)解决以下两类问题: 1)、已知三边,求三个角;(唯一解)
2)、已知两边和它们得夹角,求第三边和其他两个角;(唯一解)
【精典范例】
【例1】根据下列条件判断三角形ABC的形状:
(1)若a2tanB=b2tanA;
(2)b2sin2C + c2sin2B=2bccosBcosC;
解(1)由已知及正弦定理
(2RsinA)2 = (2RsinB)2 2sinAcosA=2sinBcosB sin2A=sin2B
2cos(A + B)sin(A ? B)=0
∴ A + B=90o 或 A ? B=0所以△ABC是等腰三角形或直角三角形.
(2)由正弦定理得
sin2Bsin2C=sinBsinCcosBcosC ∵ sinBsinC≠0, ∴ sinBsinC=cosBcosC,
即 cos(B + C)=0, ∴ B + C=90o, A=90o,故△ABC是直角三角形.
【例2】3.△ABC中已知∠A=30°cosB=2sinB-
①求证:△ABC是等腰三角形
②设D是△ABC外接圆直径BE与AC的交点,且AB=2 求: 的值
【例3】在ΔABC中,角A、B、C所对的边分别为 、b、c,且 .
(Ⅰ)求 的值;
(Ⅱ)若 ,求bc的最大值.
【解】(Ⅰ) =
= = =
(Ⅱ) ∵ ∴ ,
又∵ ∴ 且仅当 b=c= 时,bc= ,故bc的最大值是 .
【追踪训练】
1、在△ABC中,a=10,B=60°,C=45°,则c等于 ( )
A. B. C. D.
2、在△ABC中,a= ,b= ,B=45°,则A等于()
A.30° B.60° C.60°或120°D. 30°或150°
3、在△ABC中,a=12,b=13,C=60°,此三角形的解的情况是( )
A.无解B.一解C.二解D.不能确定
4、在△ABC中,已知 ,则角A为()
A. B. C. D. 或
5、在△ABC中,若 ,则△ABC的形状是()
A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形
6、在△ABC中,已知 ,那么△ABC一定是 ()
A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形
7、在△ABC中,周长为7.5cm,且sinA:sinB:sinC=4:5:6,下列结论:
① ②
③ ④
其中成立的个数是 ( )
A.0个B.1个C.2个D.3个
8、在△ABC中, , ,∠A=30°,则△ABC面积为 ( )
A. B. C. 或 D. 或
9、已知△ABC的面积为 ,且 ,则∠A等于 ( )
A.30°B.30°或150°C.60°D.60°或120°
10、已知△ABC的三边长 ,则△ABC的面积为 ( )
A. B. C. D.
11、在△ABC中,若 ,则△ABC是( )
A.有一内角为30°的直角三角形 B.等腰直角三角形
C.有一内角为30°的等腰三角形D.等边三角形
§2.数列
1、数列
[数列的通项公式] [数列的前n项和]
2、等差数列 [等差数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
[等差数列的判定方法]
1.定义法:若 2.等差中项:若
[等差数列的通项公式]
如果等差数列 的首项是 ,公差是 ,则等差数列的通项为 。
[说明]该公式整理后是关于n的一次函数。
[等差数列的前n项和] 1. 2.
[说明]对于公式2整理后是关于n的没有常数项的二次函数。
[等差中项]如果 , , 成等差数列,那么 叫做 与 的等差中项。即: 或
[等差数列的性质]
1.等差数列任意两项间的关系:如果 是等差数列的第 项, 是等差数列的第 项,且 ,公差为 ,则有
2.对于等差数列 ,若 ,则 。
3.若数列 是等差数列, 是其前n项的和, ,那么 , , 成等差数列。
3、等比数列
[等比数列的概念][定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示( )。
[等比中项]如果是的等比中项,那么 ,即 。
[等比数列的判定方法]1定义法:若 2.等比中项法:若 ,
2[等比数列的通项公式] 的首项是 ,公比是 ,则等比数列的通项为 。
3[等比数列的前n项和]
[等比数列的性质]
1.等比数列任意两项间的关系:如果 是等比数列的第 项, 是等差数列的第 项,且 ,公比为 ,则有
3.对于等比数列 ,若 ,则
4.若数列 是等比数列, 是其前n项的和, ,那么 , , 成等比数列。
4、数列前n项和
(1)重要公式: ; ;
(2)等差数列中,
(3)等比数列中, (4)裂项求和: ;
【追踪训练】
2、已知 为等差数列 的前 项和, ,则 .
3.已知 个数成等差数列,它们的和为 ,平方和为 ,求这 个数.
4、已知 为等差数列, ,则
5、已知 为等比数列, ,则
6、已知 为等差数列 的前 项和, ,求 .
7、已知下列数列 的前 项和 ,分别求它们的通项公式 .⑴ ; ⑵ .
8、数列 中, ,求 ,并归纳出 .
9、数列 中, .
⑴ 是数列中的第几项? ⑵ 为何值时, 有最小值?并求最小值.
§3.不等式
一、不等式的基本性质:
(1)对称性: (2)传递性:
(2)同加性:若 (3)同乘性:若 若
如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:
第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;
第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论
二、一元二次不等式解法:
解一元二次不等式的步骤:(用具体不等式比较好理解)
① 将二次项系数化为“+”:A= >0(或<0)(a>0)
② 计算判别式 ,分析不等式的解的情况:
?. >0时,求根 < ,
?. =0时,求根 = = ,
?. <0时,方程无解,
③ 写出解集.
设相应的一元二次方程 的两根为 , ,则不等式的解的各种情况如下表:
二次函数
( )的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
1、已知二次不等式 的解集为 ,求关于 的不等式 的解集.
2、若关于 的不等式 的解集为空集,求 的取值范围.
追踪训练
1、设 ,且 ,求 的取值范围.
2、已知二次不等式 的解集为 ,求关于 的不等式 的解集.
3、若关于 的不等式 的解集为空集,求 的取值范围.
三、二元一次不等式(组)与平面区域
四、简单的线性规划
典型例题:求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件
解:不等式组所表示的平面区域如图所示:
从图示可知,直线3x+5y=t在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t最小,以经过点( )的直线所对应的t最大.
所以zmin=3×(-2)+5×(-1)=-11.
zmax=3× +5× =14
五、基本不等式
1.重要不等式:
如果
2.基本不等式:如果a,b是正数,那么
??我们称 的算术平均数,称 的几何平均数?
(注意: 成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数。)
不等式应用:
(1).两个正数的和为定值时,它们的积有最大值,即若a,b∈R+,且a+b=M,M为定值,则ab≤ ,等号当且仅当a=b时成立.(简记为:和为定值积最大)
(2).两个正数的积为定值时,它们的和有最小值,即若a,b∈R+,且ab=P,P为定值,则a+b≥2 ,等号当且仅当a=b时成立.(简记为:积为定值和最小)
典型例题:例1(1) 若x>0,求 的最小值;(2)若x<0,求 的最大值.
[点拨]本题(1)x>0和 =36两个前提条件;(2)中x<0,可以用-x>0来转化.
解1) 因为 x>0 由基本不等式得
,当且仅当 即x= 时,
有最小值为12.
(2)因为 x<0, 所以 -x>0, 由基本不等式得:
,
所以 .
当且仅当 即x=- 时, 取得最大-12.
例2将一块边长为 的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?
解:设剪去的小正方形的边长为 则其容积为
当且仅当 即 时取“=”
即当剪去的小正方形的边长为 时,铁盒的容积为
【追踪训练】
3、已知函数 ,满足 , ,那么
的取值范围是 .
4、解不等式:(1) ;(2)
6、 画出不等式组 表示的平面区域。7、已知x、y满足不等式 ,求z=3x+y的最小值。
(利用基本不等式证明不等式 ) 求证
(利用基本不等式求最值)若x>0,y>0,且 ,求xy的最小值
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/61859.html
相关阅读:简单复合函数的导数学案练习题
闂傚倸鍊搁崐鐑芥嚄閸撲礁鍨濇い鏍亼閳ь剙鍟村畷銊р偓娑櫭禍杈ㄧ節閻㈤潧孝闁稿﹤顕槐鎾愁潩閼哥數鍘卞銈嗗姂閸婃洟寮搁弮鍫熺厽婵犻潧妫涢崺锝夋煛瀹€瀣埌閾绘牠鏌嶈閸撶喖骞冭缁绘繈宕舵搴b棨闂備礁鎼粙渚€宕㈡禒瀣亗闁靛濡囩粻楣冩煙鐎电ǹ浠ч柟鍐叉噺閵囧嫰鏁愰崨顓犻獓缂備胶绮换鍫ュ春閳ь剚銇勯幒宥囶槮妞ゆ洟浜堕弻鈩冨緞鐎n亞浠稿銈冨劜缁诲牆顫忓ú顏勭闁绘劖褰冩俊褔姊洪崨濠傚闁哄懏绮岄埢鎾寸鐎n偀鎷洪柣鐘叉搐瀵爼骞戦敐澶嬬厵闁惧浚鍋呯亸顓㈡煥閺囨ê鐏查柡灞芥椤撳ジ宕ㄩ閿亾椤掑嫭鐓涘璺猴功婢ф垿鏌涢弬鍧楀弰闁靛棗鎳樺濠氬Ψ閿旀儳骞嶉梻浣虹帛閸ㄦ儼鎽紒鐐礃瀹曠數妲愰幒妤婃晩闁兼亽鍎遍弳妤冪磽娴d粙鍝洪柟鐟版搐閻e嘲顫滈埀顒勫春閳╁啯濯撮弶鐐靛閸嬪懘姊婚崒娆愮グ婵℃ぜ鍔戝钘夘吋婢跺﹦锛欏┑鐘绘涧椤戝洤鐣垫笟鈧幃妤呮晲鎼粹剝鐏嶉梺绋款儛娴滄繈濡甸崟顖氬唨闁靛ě灞炬婵$偑鍊栭弻銊ッ洪鐑嗘綎婵炲樊浜滃婵嗏攽閻樻彃顏柛锝庡弮濮婃椽骞栭悙鎻掝潊闂佺ǹ顑嗛崝鏇㈠煡婢舵劖鍋ㄧ紒瀣硶閸旓箑顪冮妶鍡楃瑨閻庢凹鍙冮幃锟犳偄閸涘﹤寮垮┑鈽嗗灣閸樠呮暜閼哥數绠鹃柛娑卞枤閹冲懐绱掓潏銊ョ瑲婵炵厧绻樻俊姝岊槾闁伙絽銈稿楦裤亹閹烘繃顥栨繝鐢靛亹閸嬫挻绻濈喊澶岀?闁稿繑锕㈠顐﹀磼閻愭潙浠奸柣蹇曞仧鏋ù婊呭亾閵囧嫰寮村Δ鈧禍楣冩⒑鐠団€虫灈闁搞垺鐓¢崺銏℃償閵堝洨鏉搁梺鍦檸閸ㄧ増绂嶉幆褉鏀介柣妯虹枃婢规ḿ鐥幆褜鐓奸柡灞诲妼閳规垿宕卞鍡橈骏婵$偑鍊愰弲婵嬪礂濮椻偓瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑娑綖閳哄懏鈷戦弶鐐村椤斿鏌¢崨顖氣枅妤犵偛鍟伴幑鍕偘閳╁喚娼旈梻浣告惈鐠囩偤宕橀崜褉鍋撴潏鈺冪=闁稿本鑹鹃埀顒€鎽滅划鏃堟濞磋櫕鐩畷姗€顢欓懖鈺冩瀮闂備浇顫夊畷姗€顢氳椤斿繐鈹戦崶銉ょ盎闂佸搫鍟ú銈堫暱闂佽瀛╂穱鍝勨枍閺囩姵宕叉繛鎴炲焹閸嬫挸鈽夊▎瀣窗闂佹椿鍘奸鍛存箒濠电姴艌閸嬫挾绱掗鐣屾噰鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粓绠栧铏圭矙閸栤€冲闂佺娅曢幑鍥极閸愵喖顫呴柕鍫濇噽椤撶厧顪冮妶鍡樷拹闁稿骸鍟块悾鐑藉Ψ閵夈垺鏂€闂佺粯鍔曞鍫曀夊⿰鍕閻庣數枪閸樻挳鏌熼姘冲闁伙絾绻堝畷鐔碱敆閸屾艾绠ョ紓鍌氬€搁崐鐑芥倿閿曞倹鏅┑鐘愁問閸犳牠宕幍顔筋潟闁圭儤姊瑰畷澶愭煣韫囨稈鍋撳☉姘垛攺缂傚倸鍊风粈渚€鎯岄崒娑氼洸闁割偅娲栭弰銉╂煕閺囥劌鐏犵紒鈧崘顏呭枑闊洦娲滈惌鍡涙煃瑜滈崜鐔奉潖閾忚瀚氶柟缁樺俯閸斿绱撴担鍓插剱閻㈩垽绻濆顐も偓锝庡枟閳锋垹绱掔€n偒鍎ラ柛搴$箳缁辨帗寰勬繝鍌ゆ殺闂佸憡甯楃敮鎺楋綖濠靛鏁勯柣鎰摠閵囨繃銇勯姀鈩冾棃鐎规洦浜畷姗€顢旈崟顒€鍔掗梻鍌氬€搁崐椋庣矆娓氣偓楠炴牠顢曢敂钘変罕闂佺硶鍓濋悷褔鎯岄幘缁樺€垫繛鎴烆伆閹达箑鐭楅煫鍥ㄧ⊕閻撶喖鏌¢崒姘变虎闁诡喗鍨块弻锟犲椽娴gǹ鈷嬮梺璇″枟閿曘垽骞冨▎鎴炲磯閺夌偟澧楅惈蹇涙⒒娴h棄鍚归柛鐘冲姉閹广垽宕奸妷銉ㄦ憰闂佺粯姊婚崢褔宕欓悩鐐戒簻闁规壋鏅涢悘鈺佲攽椤旇姤绀€闁宠鍨块幃鈺咁敃椤厼顥氭繝鐢靛仦閹稿宕洪崘顔肩;闁圭偓鎯屽▓浠嬫煟閹邦垰鐨洪弫鍫ユ⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤冪懆闁诲孩鍑归崜娑㈠焵椤掍浇澹樻い锔诲灦閳ワ妇鎹勯妸锕€纾繛鎾村嚬閸ㄤ即宕滄潏鈺冪=闁稿本姘ㄨⅵ闂佺ǹ顑嗛幑鍥ь潖缂佹ɑ濯撮柣鐔煎亰閸ゅ绱撴担鍓插剱闁搞劌澧庣紓鎾寸鐎n亞鐫勯梺绋挎湰缁酣鎮鹃懜鐢电瘈闁靛骏绲介悡鎰版煕閺冣偓濞叉粎鍒掓繝姘ㄩ柍鍝勫€婚崢鐢电磽娴e壊鍎忔繛纭风節椤㈡挸螖娴e吀绨婚柟鍏肩暘閸ㄥ搫鐣峰畝鍕厸鐎光偓鐎n剛袦闂佺硶鏅换婵嗙暦濡ゅ懏鏅濋柍褜鍓涚槐鐐寸節閸屾粍娈鹃梺鎸庣箓閻楁粌危婵犳碍鈷戠€规洖娲ㄧ敮娑欎繆椤愩垹鏆欐い鏇秮楠炴﹢顢欓挊澶嗗亾閻戣姤鐓曢煫鍥ㄦ尰閹叉悂鏌i鐕佹疁婵﹥妞介幊锟犲Χ閸涘拑缍侀弻娑㈠棘閻愬弶鍣圭紒韬插€曢埞鎴﹀磼濠ф挸婀辩划濠氬蓟閵夛妇鍘棅顐㈡搐椤戝懘鍩€椤掍焦绀夌紒缁樺哺濮婄粯鎷呴崨闈涚秺瀵敻顢楅崟顐ゎ槱闂佽崵鍠愰崳鏉懨洪鍕幯冾熆鐠轰警鍎戦柛妯哄船閳规垿鎮欓崣澶樻!闂佸憡姊瑰ú鐔煎箖濮椻偓閸╋繝宕掗妶鍡╁晬闂備胶绮崝鏇烆嚕閸洖绐楁俊顖氱毞閸嬫挸鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴h倽鏃堝川椤撶媴绱叉繝鐢靛Т閿曘倝宕幎绛嬫晩濠㈣埖鍔栭埛鎺懨归敐鍛暈闁诡垰鐗撻弻锝呂旈埀顒€螞濠靛﹥顥ら梻浣筋潐椤旀牠宕板鑸靛剹闁瑰墽绮悡鏇㈡煥閺冨浂鍤欐鐐村姍閺屾稓鈧綆鍋呯亸顓熴亜椤愶絿绠炴い銏☆殕閹峰懐鎲撮崟顐紗濠电姷鏁告慨鎾儉婢舵劕围闁告洦鍋呴崕鎾绘⒒娴g瓔鍤冮柛锝庡櫍瀹曟娊鏁愭径鍫氬亾娴h倽鐔烘偘閳╁啯鏉搁梺璇插嚱缂嶅棝宕戦崨瀛樺仼闁割偅娲橀埛鎺懨归敐鍛暈闁诡垰鐗婇妵鍕槷闁稿鎹囧娲偡閺夋寧顔€闂佺懓鍤栭幏锟�/闂傚倸鍊风粈渚€骞栭位鍥敃閿曗偓閻ょ偓绻濇繝鍌涘櫤鐎规洘鐓¢弻娑㈠箛閸忓摜鍑归梺绋跨箲缁捇寮婚妶鍥╃煓閻犳亽鍔嬬划鍨箾鐎涙ê娈犻柛濠冪墱閹广垹鈹戠€n偒妫冨┑鐐村灦鐢偛锕㈤崨顓涙斀闁绘劖褰冮幃鎴︽煕閺冣偓閻熲晛顕f繝姘櫜濠㈣泛谩閳哄懏鐓忓璺虹墕閸旀潙霉閻樺眰鍋㈡慨濠冩そ瀹曨偊濡烽妷銈囨崟婵$偑鍊栧ú锕傚矗閸愵喖鏄ラ柍褜鍓氶妵鍕箳閸℃ぞ澹曟繝鐢靛Л閸嬫捇鏌涘Δ鍐ㄤ汗闁哄绉归弻鏇$疀鐎n亞浠惧銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垶鑹鹃·鈧梺璇插绾板秴顫濋妸鈺佺劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸樺ジ鈥﹂崹顔ョ喖鎮℃惔锝囩摌婵犵數鍋涘Ο濠冪濠靛鐓曢柟瀵稿亼娴滄粓鏌熼弶鍨暢缁炬崘娉曠槐鎺楀箛椤撶噥妫冮梺鍝勬湰缁嬫捇鍩€椤掑﹦绉甸柛瀣閺呭爼顢楅崒婊咃紲闂佺ǹ鏈粙鎴澝归绛嬫闁绘劕寮堕ˉ銏⑩偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬪▍锟� 4509422@qq.com 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳澘螖閿濆懎鏆欑痪鎯ь煼閺岀喖骞嗚閹界娀鏌涘▎蹇曠闁哄本娲熷畷鐓庘攽閹邦厜褔姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎴炲磯閺夌偟澧楅惈蹇斾繆閻愵亜鈧洜鎹㈠Δ浣侯洸妞ゆ帒鍊归~鏇㈡煙閹呮憼濠殿垱鎸抽弻娑樷攽閸曨偄濮㈠銈嗘煥椤﹂潧顫忛搹鍦<婵☆垳绮崕鎾剁磽娴d粙鍝烘繛鑼枛瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滄儳鈹戦悩顐壕闂備緡鍓欑粔瀵稿閸ф鐓欓悗鐢登规牎濡炪値鍋呭ú妯兼崲濠靛顥堟繛鎴濆船閸撲即鏌f惔銏e妞わ缚鍗虫俊鐢稿礋椤栨氨顔婇梺鐟扮摠缁洪箖宕戦幘璇插強闊洤顑勫Ч妤呮⒑閸濆嫯顫﹂柛搴㈢叀瀹曟劙宕奸弴鐘插絼闂佹悶鍎崝宥囦焊閻楀牄浜滈柕澹啠鏋呴梺鍝勭焿缁蹭粙鍩為幋锕€鐐婇柍鍝勫€搁崹閬嶆煟鎼淬値娼愭繛鍙壝~婵嬪Ω閳轰胶顔嗛梺缁樓归褏绮婚悽鍛婄厵闁绘垶蓱閻擄綁鏌熼鍡欑М婵﹤顭峰畷鎺戭潩椤戣棄浜鹃柛婵勫劗閸嬫挸顫濋妷銉ヮ潎閻庤娲橀崝娆撶嵁鐎n喗鏅濋柍褜鍓熼幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷