过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用。
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度 随时间 变化的函数 的图像,图3.3-1(2)表示高台跳水运动员的速度 随时间 变化的函数 的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度 随时间 的增加而增加,即 是增函数.相应地, .
(2)从最高点到入水,运动员离水面的高度 随时间 的增加而减少,即 是减函数.相应地, .
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图 3.3-3,导数 表示函数 在点 处的切线的斜率.
( 图 3.3-3)
在 处, ,切线是“左下右上”式的,这时,函数 在 附近单调递增;
在 处, ,切线是“左上右下”式的,这时,函数 在 附近单调递减.
结论:函数的单调性与导数的关系
在某个区间 内,如果 ,那么函数 在这个区间内单调递增;如果 ,那么函数 在这个区间内单调递减.
说明:(1)特别的,如果 ,那么函数 在这个区间内是常函数.
3.求解函数 单调区间的步骤:
(1)确定函数 的定义域;
(2)求导数 ;
(3)解不等式 ,解集在定义域内的部分为增区间;
(4)解不等式 ,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数 的下列信息:
当 时, ;
当 ,或 时, ;
当 ,或 时,
试画出函数 图像的大致形状.
解:当 时, ,可知 在此区间内单调递增;
当 ,或 时, ;可知 在此区间内单调递减;
当 ,或 时, ,这两点比较特殊,我们把它称为“临界点”.
综上,函数 图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1) ; (2)
(3) ; (4)
解:(1)因为 ,所以,
因此, 在R上单调递增,如图3.3-5(1)所示.
(2)因为 ,所以,
当 ,即 时,函数 单调递增;
当 ,即 时,函数 单调递减;
函数 的图像如图3.3-5(2)所示.
(3)因为 ,所以,
因此,函数 在 单调递减,如图3.3-5(3)所示.
(4)因为 ,所以 .
当 ,即 时,函数 ;
当 ,即 时,函数 ;
函数 的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度 与时间 的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数 在 或 内的图像“陡峭”,
在 或 内的图像“平缓”.
例4.求证:函数 在区间 内是减函数.
证明:因为
当 即 时, ,所以函数 在区间 内是减函数.
说明:证明可导函数 在 内的单调性步骤:
(1)求导函数 ;
(2)判断 在 内的符号;
(3)做出结论: 为增函数, 为减函数.
例5.已知函数 在区间 上是增函数,求实数 的取值范围.
解: ,因为 在区间 上是增函数,所以 对 恒成立,即 对 恒成立,解之得:
所以实数 的取值范围为 .
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则 ;若函数单调递减,则 ”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+ ,试讨论出此函数的单调区间.
解:y′=(x+ )′
=1-1?x-2=
令 >0.
解得x>1或x<-1.
∴y=x+ 的单调增区间是(-∞,-1)和(1,+∞).
令 <0,解得-1<x<0或0<x<1.
∴y=x+ 的单调减区间是(-1,0)和(0,1)
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+7 2.f(x)= +2x 3. f(x)=sinx , x 4. y=xlnx
2.课本练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数 单调区间
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/62933.html
相关阅读:简单复合函数的导数学案练习题
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�