(一)复习引入
1. 几种常见函数的导数公式
(C )=0 (C为常数). (xn)=nxn-1 (nÎQ). ( sinx )=cosx . ( cosx )=-sinx .
2.和(或差)的导数 (u±v)=u±v.
3.积的导数 (uv)=uv+uv. (Cu)=Cu .
4.商的导数
(二)讲授新课
1.复合函数:
如 y=(3x-2)2由二次函数y=u2 和一次函数u=3x-2“复合”而成的.y=u2 =(3x-2)2 .
像y=(3x-2)2这样由几个函数复合而成的函数,就是复合函数.
练习:指出下列函数是怎样复合而成的.
复合函数的导数
一般地,设函数u=j(x)在点x处有导数u'x=j'(x),函数y=f(u) 在点x的对应点u处有导数y'u=f '(u) ,则复合函数y=f(j(x)) 在点x处也有导数,且 y'x =y'u?u'x.
或写作 f 'x (j(x))=f '(u) j'(x).
复合函数对自变量的求导法则,即复合函数对自变量的导数,等于已知函数对中间变量的函数,乘中间变量对自变量的导数.
例1 求y =(3x-2)2的导数.
解:y'=[(3x-2)2]' =(9x2-12x+4)'=18x-12. 法1
函数y =(3x-2)2又可以看成由y=u2 ,u=3x-2复合而成,其中u称为中间变量.
由于y'u=2u,u'x=3,
因而 y'x=y'u?u'x =2u?3=2u?3=2(3x-2)?3=18x-12.
法2 y'x=y'u?u'x
例2 求y=(2x+1)5的导数.
解:设y=u5,u=2x+1,
则 y'x=y'u?u'x =(u5)'u?(2x+1) 'x=5u4?2=5(2x+1)4?2=10(2x+1)4.
练习1.
求函数 的导数.
例4.
解: 设y=u-4,u=1-3x,则
y'x=y'u?u'x=(u-4)'u?(1-3x)'x=-4u-5?(-3)=12u-5=12(1-3x)-5=
例5.
例6.求 的导数.
解:
例7. 求 的导数.
解法1:
解法2:
(三)课堂小结
复合函数的导数:
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/71870.html
相关阅读:简单复合函数的导数学案练习题
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�