高二数学上册第一次月考模块检测试题(含答案)

编辑: 逍遥路 关键词: 高二 来源: 高中学习网


M
辽宁省东北育才学校2014-2014学年高二第一次月考
数学试题
一、:(每小题5分,共60分)
1.下列命题中的假命题是
A. 且 ,都有
B. ,直线 恒过定点
C. 使 是幂函数
D. ,函数 都不是偶函数
答案:D
2.已知命题 R, R, 给出下列结论:①命题“ ”是真命题;②命题“ ”是假命题;③命题“ ”是真命题;④命题“ ”是假命题.其中正确的是
A.②④B.②③C.③④D.①②③
答案:B
3.给定下列四个命题:
① ,使 成立;
②已知命题 ,那么命题 为 ,使 ;
③若两个平面都和第三个平面平行,那么这两个平面平行;
④若两个平面都和第三个平面垂直,那么这两个平面平行.
其中真命题个数是
A.0 B.1 C.2D.3
答案:B
4.设向量 , ,则“ ”是“ ”的
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
答案:A
5.已知 , 表示两个不同的平面,m为平面 内的一条直线,则“ ”是“ ” 是
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案:B
6.在 中, 是 的
A.充分而不必要条件        B.必要而不充分条件
C.充分必要条件        D.既不充分也不必要条件
答案:C
7.设F1,F2是椭圆 的两个焦点,P是椭圆上的点,且 ,则 的面积为
A.4 B. C. D.6
答案:D
8.过点 的直线 与椭圆 交于 两点,线段 的中点为 ,设直线 的斜率为 ,直线 的斜率为 ,则 的值为
A. B. C. D.
答案:D
9.F1,F2是椭圆 的两个焦点, 是长轴的两个端点,若 是椭圆上异于 的动点,考察下面四个命题:
① ;
② ;
③若 越接近于 ,则离心率越接近于1;
④直线 与 的斜率之积等于 .
其中正确命题的个数是
A.1 B.2 C.3 D.4
答案:C
10.已知 为椭圆 的两个焦点, 为椭圆短轴的一个端点, ,则椭圆的离心率的取值范围
A. B. C. D.
答案:A
11.设 为曲线 的焦点, 是曲线 与 的一个交点,则 的值为
A. B. C. D.
答案:B
12.已知点P是椭圆C: 上的动点,F1、F2分别是左右焦点,O为坐标原点,则 的取值范围是
A.[0, ] B. C. D.[0, ]
答案:D
二、题:(每小题5分,共20分)
13.给定下列四个命题:
①“ ”是“ ”的充分不必要条件;②若“ ”为真,则“ ”为真;
③若 ,则 ;④若集合 ,则 .
其中为真命题的是 (填上所有正确命题的序号).
答案:①④
14.若直线l: 与圆 没有公共点,则过点 的直线与椭圆 的公共点个数为 .
答案:2
15.给出下列四个命题:
①命题“ ”的否定是“ ”;
②在空间中, 、 是两条不重合的直线, 、 是两个不重合的平面,如果 , , ,那么 ;
③将函数 的图象向右平移 个单位,得到函数 的图象;
④函数 的定义域为 ,且 ,若方程 有两个不同实根,则 的取值范围为 .
其中正确命题的序号是 .
答案:③④
16.设 为双曲线 上一点, 分别是双曲线的左、右焦点,若 的面积为12,则 等于 .
答案:
三、解答题:(17题满分10分,18?22题每题12分,共70分)
17.(本小题满分10分)
设命题 :函数 的定义域为 ;命题 :不等式
对一切正实数均成立,如果命题 或 为真命题,命题 且 为假命题,求实数 的取值范围.
答案: 真: ; 真: .综上:
18.(本小题满分12分)
设动直线 垂直于 轴,且与椭圆 交于 两点, 是 上满足 的点,求点 的轨迹方程.
解:设点 ,则由方程 得
两点的坐标分别为


又直线 与椭圆交于两点,
点 的轨迹方程为 …………………12分
19.(本小题满分12分)
已知椭圆 ,过点 的直线 与椭圆 交于两点 , 为坐标原点,若 为直角三角形,求直线 的斜率.
所以 ,
所以 ,解得 . ………………8分
(?)当 或 为直角时,不妨设 为直角,
此时, ,所以 ,即 ………①,
又 ………②,
将①代入②,消去 得 ,
解得 或 (舍去),
将 代入①,得 ,
所以 ,
经检验,所求 值均符合题意,综上, 的值为 和 .………………12分
20.(本小题满分12分)
设直线 与椭圆 相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.
(Ⅰ)证明: ;
(Ⅱ)若 的面积取得最大值时的椭圆方程.
得 代入上式,得 ……………8分
于是,△OAB的面积
其中,上式取等号的条件是 即 ……………………10分
由 可得
将 及 这两组值分别代入①,均可解出
∴△OAB的面积取得最大值的椭圆方程是 --------------12分
21.(本小题满分12分)
若椭圆 的中心在原点,焦点在 轴上,短轴的一个端点与左右焦点 、 组成一个正三角形,焦点到椭圆上的点的最短距离为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ) 过点 作直线 与椭圆 交于 、 两点,线段 的中点为 ,求直线 的斜率 的取值范围.
当 时, ,
且 ……11 分
综上所述,直线 的斜率 的取值范围是 . ……12 分
22.(本小题满分12分)
已知中心在原点,焦点在 轴上的椭圆 的离心率为 ,且经过点 ,过点 的直线 与椭圆 相交于不同的两点 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)是否存直线 ,满足 ?若存在,求出直线 的方程;若不存在,请说明理由.
解:(Ⅰ)设椭圆 的方程为 ,由题意得
解得 , ,故椭圆 的方程为


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/77105.html

相关阅读:

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 4509422@qq.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷