导数的四则运算法则

编辑: 逍遥路 关键词: 高二 来源: 高中学习网


2.4 导数的四则运算法则
过程:
一.创设情景
函数导数


四种常见函数 、 、 、 的导数公式及应用


二.新课讲授
(一)基本初等函数的导数公式表

函数导数

(二)导数的运算法则
导数运算法则
1.
2.
3.


(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)

三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为 ,物价 (单位:元)与时间 (单位:年)有如下函数关系 ,其中 为 时的物价.假定某种商品的 ,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有
所以 (元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)
(2)y = ;
(3)y =x ? sin x ? ln x;
(4)y = ;
(5)y = .
(6)y =(2 x2-5 x +1)ex
(7) y =
【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.
例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为 时所需费用(单位:元)为

求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)
解:净化费用的瞬时变化率就是净化费用函数的导数.


(1)因为 ,所以,纯净度为 时,费用的瞬时变化率是52.84元/吨.
(2)因为 ,所以,纯净度为 时,费用的瞬时变化率是1321元/吨.
函数 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知, .它表示纯净度为 左右时净化费用的瞬时变化率,大约是纯净度为 左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本练习
2.已知曲线C:y =3 x 4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y =-12 x +8)

五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则

六.布置作业

本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoer/81092.html

相关阅读:

閻楀牊娼堟竟鐗堟閿涙碍婀伴弬鍥у敶鐎瑰湱鏁辨禍鎺曚粓缂冩垹鏁ら幋鐤殰閸欐垼纭€閻氼噯绱濈拠銉︽瀮鐟欏倻鍋f禒鍛敩鐞涖劋缍旈懓鍛拱娴滄亽鈧倹婀扮粩娆庣矌閹绘劒绶垫穱鈩冧紖鐎涙ê鍋嶇粚娲?閺堝秴濮熼敍灞肩瑝閹枫儲婀侀幍鈧張澶嬫綀閿涘奔绗夐幍鎸庡閻╃ǹ鍙у▔鏇炵伐鐠愶絼鎹㈤妴鍌氼洤閸欐垹骞囬張顒傜彲閺堝绉圭€氬本濡辩悮顓濋暅閺夛拷/鏉╂繃纭舵潻婵婎潐閻ㄥ嫬鍞寸€圭櫢绱濈拠宄板絺闁線鍋栨禒鎯板殾 4509422@qq.com 娑撶偓濮ら敍灞肩缂佸繑鐓$€圭儑绱濋張顒傜彲鐏忓棛鐝涢崚璇插灩闂勩們鈧拷