高考数学解读和2017高考备考建议

编辑: 逍遥路 关键词: 高考复习 来源: 高中学习网


试卷命题特点分析

1.立足考纲,核心突出

数学文、理科试卷,考察内容全面,但考察核心仍然是函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,共占110分。数列考查等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道小题题;立几考查三视图、空间几何体体积,夹角的计算及平行垂直的证明:解几考查三种圆锥曲线与直线,以直线与椭圆作为解答题;函数则考查零点:导数、单调性与最值等问题,仍属?轴题。

2.面向基础,适度创新

今年的试卷难度,虽然较福建卷难度稍有提升,但是考察的基本知识与方法没有特别大的变化,比如,集合、复数、框图,不等式,基本函数的图像、平面向量、三角模块、数列模块的考察,都属于常规方式。今年的试卷,没有向往年一样,出一些特别“特立独行”的题目,而是在我们现有学习内容的基础上,考察“逆向思维”的能力,主要是体现在对立体几何简答题的考察上,比如文科18题的第一问,常规考法是给中点用来证明平行或者垂直,而今年考察方式是反向证明中点的位置;比如,理科18题,常规考法是先通过垂直的证明,得到二面角的大小,而今年的考法方式是给出两个已知的二面角,反向证明面与面的垂直关系。虽然题目的背景知识没有创新,但是考察方式的创新,对学生能力的要求更为综合。

3.常规考察,选拔能力

今年全国卷的特点,除了核心突出,还有一个特点就是考察知识的全面性,要求学生在备考过程中360°无死角复习。

比如理科第4题,考察的是几何概型的长度比的模型;再比如选考部分的22题(几何证明),23题(极坐标与参数方程)与24题(不等式),学生在备考过程中往往有一个误区就是因为平时训练的比较多的是参数方程,而且不等式的考察有时候偏难,所以这次考试只准备了参数方程,然而,今年的试卷中,不等式的题目比参数方程容易的简直不只一点点,如果选择不等式作答,就会又容易,又准确,又快速的拿下这10分。

当然,全国卷除了对知识要求全面掌握,对应试能力要求也同等重要:比如文科第9题(理7),考察基本初等函数的图像,因为题目是选择题的形式,那我们作答时候用“排除法”就可以快速得到答案;再比如文科第8题(理8),考察的是指数、对数、幂函数的单调性问题,但是同样因为是选择题,我们可与用“赋值法”,将抽象的字母转化为具体的数字,从而快速得到正确的答案。这几题虽然是常规的考察,但是我们解题如果可以为后面的简答题节约时间,也是对考试得高分大有裨益的。

4.文理有别,差异缩小

数学卷对文科和理科的要求,无论是从内容量设置和难度的设置上,均存在一定的差异,比如在统计概率这一模块,理科生要比文科生多掌握排列组合等计数原理,二项式定理,离散型随机变量的分布列这三块;再比如对于导数的要求,文科生只要求正向运算求导数,但理科生多了逆向考察求积分;往年文科生不考察选修部分,仅理科生考察。

从今年的试卷上来看,文科理科在考察方向上存在差异,也存在相同之处:

三角模块,理科卷以1道小题和1道简单题形式出现,考察分值为17分,而文科卷是以3道小题的形式考察分值为15分;数列模块里,立刻卷考察2道小题共计10分,而文科卷考察形式为1道简答题,分值为12分;理科统计概率的简答题,理科19题考察的是分布列,而文科19题考察的古典概型;导数模块,文科21题和理科21题,考察的是同一个函数,不同的考法是,文科两小问加起来的考察同理科第1小问考察的是一样的,只是理科生多考察了第2小问。

但是,值得一提的是,今年的全国卷来看,文科与理科的差异化,正在缩小。文科理科不仅选修部分内容完全一样,就连必考部分的考察也有40多分一模一样的考题,比如选择题的文7题与理6题一致,文8题与理8题一致,文9题与理7题一致,文10题与理9题一致,文11题与理11题一致,文16题与理16题一致,文21题与理21题的第1问一致。这就要求文科生和理科生都要加强对数学科目的重视,才能在考场上发挥自如。

给2017届高考生的复习建议

1.构建知识网络,注重基础

对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。要扎扎实实,对每个知识点都要理解透彻,明确它们要求以及与其他知识之间的联系。

2.阶段自查,归因提升

每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:

(1)找不到解题着手点;

(2)概念不清、似懂非懂;

(3)概念或原理的应用有问题;

(4)知识点之间的迁移和综合有问题;

(5)情景设计看不懂;

(6)不熟练,时间不够;

(7)粗心,或算错。

以上方法经过一个阶段自查,建立一份个人补差档案。通过边查边改,重复犯的错误一定会越来越少。同时,随着自我认识的不断完善,也有利于考试时增强自信心。

3.强化定时训练,及时反馈矫正

学好数学要做大量的题,但反过来做了大量的题,数学不一定好,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的。

(1)要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题,但一定要做到定时定量;

(2)是无论是作业还是测验,都应把准确性放在第一位,而不是一味地去追求速度;

(3)提高计算能力。

4.回归课本,抓住考纲

尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

5.加强数学思想、数学方法的渗透

着眼于理解数学,真正理解问题的来龙去脉,而不是靠题海战术取胜,通过分析典型问题解题过程,熟练解题,提高解题能力。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaokao/769925.html

相关阅读:高考前积极的自我暗示减压法