高三文科参考答案与评分标准一、选择题(每小题5分)D A D D C B C D D B B C二、填空题(每小题4分) 13. 14. 15. 16.③④三、解答题17. 解:(1)∵ , ∴ ……………2分∴ , ∴ . ……………5分(2)由(1)得:, ∴ , ∴ ……………7分 ∴ ,, ……………9分∴ ,,,, ……………11分 ……………12分18. 解 :(1)证明 AB∥DC,且AB平面PCD,CD?平面PCDAB∥平面PCD. (2)证明在直角梯形ABCD中,过C作CEAB于点E,则四边形ADCE为矩形AE=DC=1,又AB=2,BE=1,在RtBEC中,ABC=45°,CE=BE=1,CB=,AD=CE=1,则AC==,AC2+BC2=AB2,BC⊥AC,又PA⊥平面ABCD,PA⊥BC,PA∩AC=A,BC⊥平面PAC, ∴ …………3分即:,所以数列为等差数列; …………6分(2)由(1)得:, , ………9分, …………12分20. 解:(1)由题意知, , 将代入化简得:,(), ……………………6分(2),当且仅当时,上式取等号. ……………………9分当时, 促销费用投入1万元时,厂家的利润最大;当时, 在上单调递增,所以在时,函数有最大值.促销费用投入万元时,厂家的利润最大 .综上述,当时, 促销费用投入1万元时,厂家的利润最大;当时,促销费用投入万元时,厂家的利润最大 . ……………………12分21. 解:(1)∵是二次函数,不等式的解集是, ∴可设,. ∴. …………… 2分 ∵函数在点处的切线与直线平行, ∴. ∴,解得. ∴. …………… 5分(2)解:由(1)知,方程等价于方程… 6分 设,则. …………… 7分 当时,,函数在上单调递减; 当时,,函数在上单调递增. … 9分 ∵, ∴方程在区间,内分别有唯一实数根,在区间 内没有实数根. …………… 12分 ∴存在唯一的自然数,使得方程在区间内有且只有两个不等的实数根. …………… 13分22. 解:(1)由已知,可得,, ∵,∴,,∴. ……………………………………………………4分(2)当时,直线和椭圆有两交点只需; ………………5分当时,设弦的中点为分别为点的横坐标,由,得, 由于直线与椭圆有两个不同的交点,所以,即 ① ……………………7分 ……………………9分又 ②,…10分将②代入①得,解得, 由②得 , 故所求的取值范围是. ……………………12分………………………………………13分山东省烟台市2014届高三上学期期末考试(数学文)扫描版
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/225557.html
相关阅读: