4.6 三角函数的图象与性质(二)
●知识梳理
1.三角函数的图象和性质
函 数
性 质y=sinxy=cosxy=tanx
定义域
值域
图象
奇偶性
周期性
单调性
对称性
注:读者自己填写.
2.图象与性质是一个密不可分的整体,研究性质要注意联想图象.
●点击双基
1.函数y=sin( -2x)+sin2x的最小正周期是
A.2πB.πC. D.4π
解析:y= cos2x- sin2x+sin2x= cos2x+ sin2x=sin( +2x),T=π.
答案:B
2.若f(x)sinx是周期为π的奇函数,则f(x)可以是
A.sinxB.cosxC.sin2xD.cos2x
解析:检验.
答案:B
3.函数y=2sin( -2x)(x∈[0,π])为增函数的区间是
A.[0, ]B.[ , ]
C.[ , ]D.[ ,π]
解析:由y=2sin( -2x)=-2sin(2x- )其增区间可由y=2sin(2x- )的减区间得到,即2kπ+ ≤2x- ≤2kπ+ ,k∈Z.
∴kπ+ ≤x≤kπ+ ,k∈Z.
令k=0,故选C.
答案:C
4.把y=sinx的图象向左平移 个单位,得到函数____________的图象;再把所得图象上的所有点的横坐标伸长到原的2倍,而纵坐标保持不变,得到函数____________的图象.
解析:向左平移 个单位,即以x+ 代x,得到函数y=sin(x+ ),再把所得图象上所有点的横坐标伸长到原的2倍,即以 x代x,得到函数:y=sin( x+ ).
答案:y=sin(x+ ) y=sin( x+ )
5.函数y=lg(cosx-sinx)的定义域是_______.
解析:由cosx-sinx>0 cosx>sinx.由图象观察,知2kπ- <x<2kπ+ (k∈Z).
答案:2kπ- <x<2kπ+ (k∈Z)
●典例剖析
【例1】 (1)y=cosx+cos(x+ )的最大值是_______;
(2)y=2sin(3x- )的图象的两条相邻对称轴之间的距离是_______.
剖析:(1)y=cosx+ cosx- sinx
= cosx- sinx= ( cosx- sinx)
= sin( -x).
所以ymax= .
(2)T= ,相邻对称轴间的距离为 .
答案:
【例2】 (1)已知f(x)的定义域为[0,1),求f(cosx)的定义域;
(2)求函数y=lgsin(cosx)的定义域.
剖析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角.
解:(1)0≤cosx<1 2kπ- ≤x≤2kπ+ ,且x≠2kπ(k∈Z).
∴所求函数的定义域为{x|x∈[2kπ- ,2kπ+ ]且x≠2kπ,k∈Z}.
(2)由sin(cosx)>0 2kπ<cosx<2kπ+π(k∈Z).又∵-1≤cosx≤1,∴0<cosx≤1.故所求定义域为{x|x∈(2kπ- ,2kπ+ ),k∈Z}.
评述:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.
【例3】 求函数y=sin6x+cos6x的最小正周期,并求x为何值时,y有最大值.
剖析:将原函数化成y=Asin(ωx+ )+B的形式,即可求解.
解:y=sin6x+cos6x=(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)=1-3sin2xcos2x=1- sin22x= cos4x+ .
∴T= .
当cos4x=1,即x= (k∈Z)时,ymax=1.
深化拓展
函数y=tan(ax+θ)(a>0)当x从n变化为n+1(n∈Z)时,y的值恰好由-∞变为+∞,则a=_______.
分析:你知道函数的周期T吗?
答案:π
●闯关训练
夯实基础
1.若函数f(x)=sin(ωx+ )的图象(部分)如下图所示,则ω和 的取值是
A.ω=1, = B.ω=1, =-
C.ω= , = D.ω= , =-
解析:由图象知,T=4( + )=4π= ,∴ω= .
又当x= 时,y=1,∴sin( × + )=1,
+ =2kπ+ ,k∈Z,当k=0时, = .
答案:C
2. f(x)=2cos2x+ sin2x+a(a为实常数)在区间[0, ]上的最小值为-4,那么a的值等于
A.4B.-6C.-4D.-3
解析:f(x)=1+cos2x+ sin2x+a
=2sin(2x+ )+a+1.
∵x∈[0, ],∴2x+ ∈[ , ].
∴f(x)的最小值为2×(- )+a+1=-4.
∴a=-4.
答案:C
3.函数y= 的定义域是_________.
解析:-sin ≥0 sin ≤0 2kπ-π≤ ≤2kπ 6kπ-3π≤x≤6kπ(k∈Z).
答案:6kπ-3π≤x≤6kπ(k∈Z)
4.函数y=tanx-cotx的最小正周期为____________.
解析:y= - =-2cot2x,T= .
答案:
5.求函数f(x)= 的最小正周期、最大值和最小值.
解:f(x)=
= = (1+sinxcosx)
= sin2x+ ,
所以函数f(x)的最小正周期是π,最大值是 ,最小值是 .
6.已知x∈[ , ],函数y=cos2x-sinx+b+1的最大值为 ,试求其最小值.
解:∵y=-2(sinx+ )2+ +b,
又-1≤sinx≤ ,∴当sinx=- 时,
ymax= +b= b=-1;
当sinx= 时,ymin=- .
培养能力
7.求使 = sin( - )成立的θ的区间.
解: = sin( - )
= ( sin - cos ) |sin -cos |=sin -cos
sin ≥cos 2kπ+ ≤ ≤2kπ+ (k∈Z).
因此θ∈[4kπ+ ,4kπ+ ](k∈Z).
8.已知方程sinx+cosx=k在0≤x≤π上有两解,求k的取值范围.
解:原方程sinx+cosx=k sin(x+ )=k,在同一坐标系内作函数y1= sin(x+ )与y2=k的图象.对于y= sin(x+ ),令x=0,得y=1.
∴当k∈[1, )时,观察知两曲线在[0,π]上有两交点,方程有两解.
评述:本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法.
探究创新
9.已知函数f(x)=
(1)画出f(x)的图象,并写出其单调区间、最大值、最小值;
(2)判断f(x)是否为周期函数.如果是,求出最小正周期.
解:(1)实线即为f(x)的图象.
单调增区间为[2kπ+ ,2kπ+ ],[2kπ+ ,2kπ+2π](k∈Z),
单调减区间为[2kπ,2kπ+ ],[2kπ+ ,2kπ+ ](k∈Z),
f(x)max=1,f(x)min=- .
(2)f(x)为周期函数,T=2π.
●思悟小结
1.三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性.
2.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误.
●教师下载中心
点睛
1.知识精讲由学生填写,起到回顾作用.
2.例2、例4作为重点讲解,例1、例3诱导即可.
拓展题例
【例1】 已知sinα>sinβ,那么下列命题成立的是
A.若α、β是第一象限角,则cosα>cosβ
B.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则cosα>cosβ
D.若α、β是第四象限角,则tanα>tanβ
解析:借助三角函数线易得结论.
答案:D
【例2】 函数f(x)=-sin2x+sinx+a,若1≤f(x)≤ 对一切x∈R恒成立,求a的取值范围.
解:f(x)=-sin2x+sinx+a
=-(sinx- )2+a+ .
由1≤f(x)≤
1≤-(sinx- )2+a+ ≤
a-4≤(sinx- )2≤a- .①
由-1≤sinx≤1 - ≤sinx- ≤
(sinx- ) = ,(sinx- ) =0.
∴要使①式恒成立,
只需 3≤a≤4.
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/52186.html
相关阅读:2012届高考数学第一轮三角函数的基本概念导学案复习
闁绘鐗婂ḿ鍫熺珶閻楀牊顫栭柨娑欑濠€浼村棘閸パ冩暥閻庣懓婀遍弫杈ㄧ閹烘洑绮撶紓鍐╁灩閺併倝骞嬮悿顖氭闁告瑦鍨肩涵鈧柣姘煎櫙缁辨繄鎷犻妷锔界€悷娆忓€婚崑锝嗙閸涱剙鏁╅悶娑栧妺缂嶆棃鎳撻崨顔芥嫳濞存粍浜介埀顒€鍊瑰﹢鎵博濞嗗海鐭岄柟缁樺姃缁跺灚绌遍埄鍐х礀閻庢稒锚閸嬪秶绮氬ú顏咃紵闁哄牆绉存慨鐔兼晬鐏炶偐鐟濋柟鏋劜濠€渚€骞嶉埀顒勫嫉婢跺缍€闁挎稑濂旂粭澶愬箥閹稿骸顎撻柣鈺兦归崣褍鈻旈弴鐐典紣閻犳劧绲奸幑銏ゅΥ閸屾凹娲ら柛娆愬灩楠炲洭寮甸鍌滃讲闁哄牆顦扮粔鍦偓姘湰婵¤京鎮婵嬫殔闁哄鎷�/閺夆晜绻冪涵鑸垫交濠靛⿴娼愰柣銊ュ閸炲鈧湱娅㈢槐婵堟嫚瀹勬澘绲洪梺顐$窔閸嬫牗绂掗幆鏉挎 4509422@qq.com 濞戞挾鍋撴慨銈夋晬鐏炶偐顏辩紓浣哥箲閻擄紕鈧湱鍎戠槐婵嬪嫉椤掑倻褰查悘蹇撴閻濇盯宕氱拠鎻掔仼闂傚嫨鍊戦埀顒婃嫹