2013年高三文科数学查缺补漏试题(海淀区附答案)

编辑: 逍遥路 关键词: 高三 来源: 高中学习网


M
2013年高三数学查漏补缺题
文 科 2013年5月
1.函数 图象的两条相邻对称轴间的距离为
A. B. C. D.
2.下列函数中,在其定义域内既是奇函数又是减函数的是
A. B. C. D.
3.若向量 满足 ,且 ,则向量 的夹角为
A.30° B.45° C.60°D.90°
4.已知函数 ,则 , , 的大小关系为A.         B.
C.          D.
5.某空间几何体三视图如右图所示,则该几何体的表面积为_____,
体积为_____________.
6.设 、 是不同的直线, 、 、 是不同的平面,有以下四个命题:
① 若 则 ②若 , ,则
③ 若 ,则 ④若 ,则
其中所有真命题的序号是_____
7.设不等式组 表示的平面区域为D,若直线 上存在区域D上的点,则 的取值范围是_____.
8.已知不等式组 所表示的平面区域为 ,则 的面积是_____;
设点 ,当 最小时,点 坐标为_____.
9.设等比数列 的公比为 ,前 项和为 .则“ ”是“ ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件
10.设函数 在区间 上有两个零点,则 的取值范围是( )
A.
B.
C.
D.
11.已知椭圆 的离心率为 .⊙ 过椭圆 的一个顶点和一个焦点,圆心 在此椭圆上,则满足条件的点 的个数是( )
A.
B.
C.
D.
12.如果直线 总不经过点 ,其中 ,那么 的取值范围是_____.
13.如图所示,正方体 的棱长为1, E、F 分别是棱 、 的中点,过直线E、F的平面分别与棱 、 交于M、N,
设BM= x, ,给出以下四个命题:
①平面MENF 平面 ;
②四边形MENF周长 , 是单调函数;
③四边形MENF面积 , 是单调函数;
④四棱锥 的体积 为常函数;
以上命题中正确命题的个数( )
A.1 B.2 C.3 D.4
14.直线 与抛物线 相切于点 . 若 的横坐标为整数,那么 的最小值为
15.已知数列 的前 项和 若 是 中的最大值,则实数 的取值范围是_____.
解答题部分:
1. 已知函数
(I)求 的最小正周期和值域;
(II)在 中,角 所对的边分别是 ,若 且 ,试判断 的形状.
2.如图,在直角坐标系 中,点 是单位圆上的动点,过点 作 轴的垂线与射线 交于点 ,与 轴交于点 .记 ,且 .
(Ⅰ)若 ,求 ;
(Ⅱ)求 面积的最大值.
3. 已知函数 ,且
?Ⅰ?求 的值.
(Ⅱ)求函数 在区间 上的最大和最小值.
4. 已知数列 的通项公式为 ,其前 项和为 .
(I) 若 ,求 的值;
(Ⅱ) 若 且 ,求 的取值范围.
5.数列 的各项都是正数,前 项和为 ,且对任意 ,都有 .
(Ⅰ)求 的值;
(Ⅱ)求证: ;
(Ⅲ)求数列 的通项公式.
6. 已知正三角形 与平行四边形 所在的平面互相垂直.
又 ,且 ,点 分别为 的中点. 求证:
7. 如图,四棱锥 中, ⊥底面 , ⊥ .底面 为梯形, , . ,点 在棱 上,且 .
(Ⅰ)求证:平面 ⊥平面 ;
(Ⅱ)求证: ∥平面
8. 设 、 是函数 的两个极值点.
(I)若 ,求函数 的解析式;
(Ⅱ)若 ,求 的最大值.
9. 已知函数 .
(Ⅰ)若 ,求函数 的极值;
(Ⅱ)求函数 的单调区间.
10. 已知椭圆 : 的左、右焦点分别为 , ,且经过点 ,又 是椭圆 上的两点.
(Ⅰ)求椭圆 的方程;
(Ⅱ)若直线 过 ,且 ,求 .
11. 已知椭圆 的离心率为 ,短轴长为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)已知点 ,过原点 的直线与椭圆 交于 两点,直线 交椭圆 于点 ,求△ 面积的最大值.
2013年最后阶段高三数学复习参考资料
文 科 2013年5月
题号12345
答案BCCA ,
题号678910
答案①③
CC
题号1112131415
答案C
B1
解答题部分:
1. 解:?Ⅰ?
所以
?Ⅱ?由 ,有 ,
所以
因为 ,所以 ,即 .
由余弦定理 及 ,所以 .
所以 所以 .
所以 为等边三角形.
2. 解:依题意 ,所以 .
因为 ,且 ,所以 .
所以 .
(Ⅱ)由三角函数定义,得 ,从而
所以
因为 ,所以当 时,等号成立,
所以 面积的最大值为 .
3.解:(I)
(Ⅱ)因为
设 因为 所以
所以有
由二次函数的性质知道, 的对称轴为
所以当 ,即 , 时,函数取得最小值
当 ,即 , 时,函数取得最大小值
4.解:(I)因为 所以
所以 是公差为 的等差数列,
又 ,所以 ,解得 ,所以
(Ⅱ)因为 且
所以 ,得到
5.证明:(I)在已知式中,当 时,
因为 ,所以 ,
所以 ,解得
(Ⅱ) 当 时, ①

当 时, ①

①-②得,
因为 所以 ,
即 因为 适合上式
所以 (n∈N+)
(Ⅲ)由(I)知 ③
当 时, ④
③-④得 -
因为 ,所以
所以数列 是等差数列,首项为1,公差为1,可得
6. 证明:因为在正三角形 中, 为 中点,
所以
又平面 平面 ,且平面 平面 ,
所以 平面 ,所以
在 中,
所以可以得到 ,所以 ,
即 ,又
所以 平面 ,所以
7.证明:
(Ⅰ)因为 ⊥底面ABCD,
所以 .
又 , ,
所以 ⊥平面 .
又 平面 ,
所以平面 ⊥平面 .
(Ⅱ)因为 ⊥底面 ,所以
又 ,且
所以 平面 ,所以 .
在梯形 中,由 ,得 ,
所以 .
又 ,故 为等腰直角三角形.
所以 .
连接 ,交 于点 ,则
在 中, ,
所以
又 平面 , 平面 ,
所以 ∥平面 .
8.解(I)因为 ,所以
依题意有 ,所以 .
解得 ,所以 . .
(Ⅱ)因为 ,
依题意, 是方程 的两个根,且 ,
所以 .
所以 ,所以 .
因为 ,所以 .
设 ,则 .
由 得 ,由 得 .
即函数 在区间 上是增函数,在区间 上是减函数,
所以当 时, 有极大值为96,所以 在 上的最大值是96,
所以 的最大值为 .
9. 解:(Ⅰ)因为 ,
所以 , .
令 ,即 .
因为 函数 的定义域为 ,
所以 .
因为 当 时, ;当 时, ,
所以 函数 在 时取得极小值6.
(Ⅱ)由题意可得 .
由于函数 的定义域为 ,
所以 当 时,令 ,解得 或 ;
令 ,解得 ;
当 时,令 ,解得 ;令 ,解得 ;
当 时,令 ,解得 或 ;令 ,解得 ;
当 时, .
所以 当 时,函数 的单调递增区间是 , ,
单调递减区间是 ;
当 时,函数 的单调递增区间是 ,单调递减区间是 ;
当 时,函数 的单调递增区间是 , ,单调递减区间是 ;
当 时,函数 的单调递增区间是
10. 解:(Ⅰ)因为 点 在椭圆 : 上,
所以 .
所以 .
所以 椭圆 的方程为 .
(Ⅱ)因为 .
设 ,得
, .
因为直线 过 ,且 ,
所以 .
所以 .
所以
所以 .
所以 .
所以 .
所以 .
11. 解:(Ⅰ)椭圆 的方程为 .
(Ⅱ)设直线 的方程为 ,代入椭圆方程得 ,
由 ,得 ,
所以 , .
因为 是 的中点,
所以 .
由 ,
设 ,
则 ,
  当且仅当 时等号成立,此时△ 面积取最大值,最大值为 .


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/56561.html

相关阅读:2014高三数学一诊模拟考试文科试题(含答案)

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 4509422@qq.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷