【备考策略】
根据近几年高考命题特点和规律,复习本专题时,要注意以下几个方面:
1.直线的倾斜角、斜率及它们间的关系。
2.两直线平行与垂直的充要条件。
3.点到直线的距离、两平行线间的距离。
4.圆的方程(标准方程和一般方程)。
5.直线与圆的位置关系。
6.椭圆、双曲线、抛物线的定义、性质。
7.直线和圆锥曲线的位置关系,同时常与平面向量、数列、不等式结合,且每年必考。
第一讲 直线与圆
【最新考纲透析】
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
(3)能根据两条直线的斜率判定这两条直线平行或垂直。
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
(5)能用解方程组的方法求两条相交直线的交点坐标。
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
2.圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
(3)能用直线和圆的方程解决一些简单的问题。
(4)初步了解用代数方法处理几何问题的思想。
3.空间直角在系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置。
(2)会推导空间两点间的距离公式。
【核心要点突破】
要点考向1:直线的倾斜角、斜率、距离问题
考情聚焦:1.直线的倾斜角、斜率、距离问题是最基本问题,是高考中常考的知识。
2.该类问题常与平面向量结合,体现知识的交汇。
3.多以选择题、填空题的形式考查,属容易题。
考向链接:1.直线 的倾斜角和斜率反映了直线的倾斜程度。已知斜率求倾斜角时,通常可以结合正切函数的图象求解,要注意当斜率的取值范围有正有负时,倾斜角是分段的,如直线斜率的范围是[-1,1],则倾斜角的取值范围是 ,而不是
2.对于距离要熟记有关公式,并能灵活运用。
例1:若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是:
① ② ③ ④ ⑤
其中正确答案的序号是 .(写出所有正确答案的序号)
【解析】两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写① ⑤
答案:①⑤
要点考向2:两直线的位置关系
考情聚焦:1.两直线的位置关系——平行或垂直是高考考查的重点内容。
2.多以选择题、填空题的形式呈现,属容易题。
考向链接:两条直线 和 平行充要条件为 且 垂直的充要条件为 0,要熟练掌握这一条件。判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况。
例2:(2010?安徽高考文科?T4)过点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
【命题立意】本题主要考查直线平行问题。
【思路点拨】可设所求直线方程为 ,代入点(1,0)得 值,进而得直线方程。
【规范解答】选A,设直线方程为 ,又经过 ,故 ,所求方程为 ,
要点考向3:圆的方程
聚焦考情:1.圆的方程及求法是很重要的一类问题,是高考中的必考内容。
2.各种题型均可出现,属中低档题。
考向链接:求圆的方程一般有两类方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数。其一般步骤是:
①根据题意选择方程的形式:标准形式或一般形式;
②利用条件列出关于 的方程组;
③解出 ,代入标准方程或一般方程。
此外,根据条件,要尽量减少参数设方程,这样可减少运算量。
例3:(2010?广东高考文科?T6)若圆心在x轴上、半径为 的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是( )
A. B.
C. D.
【命题立意】本题考察直线与圆的位置关系.
【思路点拨】由切线的性质:圆心到切线的距离等于半径求解.
【规范解答】选 设圆心为 ,则 ,解得 ,所以,所求圆的方程为: ,故选 .
要点考向4:直线和圆的位置关系
聚焦考情:1.直线和圆的位置关系是每年必考内容,有时和向量相结合,体现了知识的交汇。
2.考查形式可以是选择题、填空题,也可以是解答题,属中、低档题目。
例4:(2010?重庆高考文科?T8)若直线 与曲线 ,( )有两个不同的公共点,则实数 的取值范围为( )
A. B.
C. D.
【命题立意】本小题考查直线、圆的方程的基础知识,体现了方程的思想、数形结合的思想及化归与转化的思想.
【思路点拨】先把圆的参数方程化为普通方程,再与直线方程联立方程组,转化为一元二次方程,利用判别式求解;或数形结合法,画出圆的图形,平移直线 观察计算.
【规范解答】选D . (方法一)消去参数 得 ,与 联立方程组,消去 得: ,因为直线与曲线有两个不同的公共点,所以 ,即 ,解得 ;
(方法二)把圆的参数方程代入直线方程得: ,即 ,所以 ,所以 ,
解得 ;
(方法三)如图所示,直线与圆相切之间的情形
符合题意,计算圆心(2,0)到直线 的
距离等于圆半径1,即 ,解得 ,
所以 .
【方法技巧】(1)判别式法:直线与曲线的交点问题转化为方程的解的个数问题;(2)利用三角函数的值域求解;(3)数形结合法.
注:直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d,及半弦长 ,构成直角三角形的关系来处理。
【高考真题探究】
1.(2010 ?海南宁夏高考?理科T15)过点A(4,1)的圆C与直线 相切于点B(2,1).则圆C的方程为 .
【命题立意】本题主要考察了圆的相关知识,如何灵活转化题目中的条件求解圆的方程是解决问题的关键.
【思路点拨】由题意得出圆心既在点 的中垂线上,又在过点B(2,1)且与直线 垂直的直线上,进而可求出圆心和半径.
【规范解答】由题意知,圆心既在过点B(2,1)且与直线 垂直的直线上,又在点 的中垂线上.可求出过点B(2,1)且与直线 垂直的直线为 , 的中垂线为 ,联立方程 ,解得 ,即圆心 ,
半径 ,所以,圆的方程为 .
【答案】
2.(2010?广东高考理科?T12)已知圆心在x轴上,半径为 的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是
【命题立意】本题考察直线与圆的位置关系.
【思路点拨】由切线的性质:圆心到切线的距离等于半径求解.
【规范解答】设圆心坐标为 ,则 ,解得 ,又圆心位于 轴左侧,所以 .故圆O的方程为 .
【答案】
3.(2010?山 东高考理科?T16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线 : 被圆C所截得的弦长为 ,则过圆心且与直线 垂直的直线的方程为 .
【命题立意】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了考生的分析问题解决问题的能力、推理论证能力和运算求解能力.
【思路点拨】根据弦长及圆心在x轴的正半轴上求出圆心坐标,再根据垂直关系可求直线方程.
【规范解答】由题意,设所求的直线方程为 ,设圆心坐标为 ,则由题意知: ,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心坐标为( 3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 .
【答案】
【方法技巧】1、研究直线与圆的位置关系,要联系圆的几何特性,尽可能的简化运算.如“垂直于弦的直径必平分弦”,“圆的切线垂直于过切点的半径”,“两圆相交时连心线必垂直平分其公共弦”等.在解题时应注意灵活运用.
2、直线与圆相交是解析几何中一类重要问题,解题时注意运用“设而不求”的技巧.
4.(2010?山东高考文科?T16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l: 被该圆所截得的弦长为 ,则圆C的标准方程为 .
【命题立意】本题考查了点到直线的距离、直线与圆的关系,圆的标准方程等知识,考查了考生的分析问题解决问题的能力、推理论证能力和运算求解能力。
【思路点拨】根据弦长及圆心在x轴的正半轴上求出圆心坐标,再求出圆的半径.
【规范解答】设圆心坐标为 ,圆的半径为 ,则由题意知: ,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心坐标为(3,0), 故所求圆的方程为 .
【答案】
【方法技巧】1、研究直线与圆的位置关系,要联系圆的几何特性,尽可能的简化运算.如“垂直于弦的直径必平分弦”,“圆的切线垂直于过切点的半径”,“两圆相交时连心线必垂直平分其公共弦”等.在解题时应注意灵活运用.
2、直线与圆相交是解析几何中一类重要问题,解题时注意运用“设而不求”的技巧.
5.(2010? 湖北高考理科?T9)若直线 与曲线 有公共点,则b的取值范围是( )
A.[ , ]B.[ ,3]
C.[-1, ]D.[ ,3]
【命题立意】本题主要考查直线与圆的位置关系,考查考生数形结合、运动变化观点的应用和运算求解能力.
【思路点拨】将方程 作等价
变形,然后借助函数图像,利用运动变化的观
点得到直线 在与曲线
有公共点时b的取值范围.
【规范解答】选D. 由图可知当直线 过点(0,3)时b取最大值3;当直线 与圆 相切且切点在圆的下半部分时对应的b取最小值.由 消去y可得 ,由 =0得 或 (舍去).
6.(2010?江西高考理科?T8)直线 与圆 相交于M,N两点,若 ,则 的取值范围 是( )
A. B.
C. D.
【命题立意】本题主要考查直线与圆位置关系的判定及利用数形结合法解题的能力.
【思路点拨】方法一:数形结合,利用圆心到直线的距离进行判定.
方法二:联立方程组利用根与系数的关系及弦长公式求解.
【规范解答】选A.(方法1)由题意,若使 ,则圆心到直线的距离 ,即 ,解得 .故选A.
(方法2)设点M,N的坐标分别为 ,将直线方程和圆的方程联立得方程组 ,消去y得 ,
由根与系数的关系得 ,
由弦长公式知 =
,
, ∴ ,即 ,
∴ ,故选A .
【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于( )
(A)2 (B)1 (C)0 (D)-1
2.夹在两条平行直线l1:3x-4y=0与l2:3x-4y-20=0之间的圆的最大面积为( )
(A)2π (B)4π (C)8π (D)16π
3.已知直线l与直线3x+4y+1=0平行且它们之间的距离为4,如果原点(0,0)位于已知直线与直线l之间,那么l的方程为( )
(A)3x+4y=0(B)3x+4y-5=0
(C)3x+4y-19=0(D)3x+4y+21=0
4.直角坐标平面内,过点P(2,1)且与圆x2+y2=4相切的直线( )
(A)有两条
(B)有且仅有一条
(C)不存在
(D)不能确定
5.直线l与圆x2+y2+2x-4y+a=0(a<3)相交于两点A,B,弦AB的中点为D(0,1),则直线l的方程为( )
(A)x-y+1=0(B)x+y+1=0
(C)x-y-1=0(D)x+y-1=0
6.(2010 漳州模拟) .一束光线从点A(-1, 1)出 发经x轴反射,到达圆C:(x-2)2+(y-3)2=1上一点的最短路程是( )
A.3 -1 B.2 C.5 D.4
二、填空题(每小题6分,共18分)
7. 已知圆O:x 2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于_______.
8.一直线经过点P(1,2),并且与点A(2,3)和B(0,-5)的距离相等,则此直线方程为___________.
9. 过点A( ,1)的直线l将圆C:x2+(y-2)2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k等于_______.
三、解答题(10、11题每题15分,12题16分,共46分)
10.已知直线l1:mx+8y+n=0和直线l2:2x+my-1=0,分别根据下列情况求实数m与n的取值.
(1)l1与l2平行;
(2)l1与l2垂直.
11.(2010安徽名校联考)将圆 向左平移1个单位,再向上移2个单位,得到圆O,直线 与圆O相交于A,B两点,若圆O上存在点C,使 ,求直线 的方程及对应的点C的坐标。
12.已知圆 : ,设点 是直线 : 上的两点,它们的横坐标分别是 ,点 在线段 上,过 点作圆 的切线 ,切点为 .
(1)若 , ,求直线 的方程;
(2)经过 三点的圆的圆心是 ,求线段 长的最小值 .
参考答案
1.【解析】选D.方法一:将选项分别代入题干中观察,易求出D符合要求.故选D.
方法二:∵直线y=ax-2和y=(a+2)x+1互相垂直,
∴a?(a+2)=-1.
∴a=-1.
2.【解析】选B.夹在两条平行线之间的最大的圆的半径为两平行线间距离的一半,而两平行线间的距离
所以 ,则圆的最大面积
3.【解析】选C.与直线3x+4y+1=0平行的直线可设为3x+4y+m=0,
由两平行线之间的距离公式可得
即直线方程为3x+4y+21=0或3x+4y-19=0,
原点位于直线l与直线3x+4y+1=0之间,可将点(0,0)代入两直线解析式,乘积 为负的即为所求,故应选C.
4.【解析】选A.∵22+12>4,
∴点P在圆外,故过P作圆的切线可作两条.
5.【解析】选A.圆心C的坐标为(-1,2),AB中点D(0,1),
∴l的方程为y-1=x-0,
即x-y+1=0,故应选A.
6.【解析】选D.因为点A(-1, 1)关于x轴的对称点坐标为(-1,-1),圆心坐标为(2,3),所以点A(-1, 1)出发经x轴反射,到达圆C:(x-2)2+(y-3)2=1上一点的最短路程为
7.【解析】∵点A(1,2)在⊙O上,∴过点A且与⊙O相切的直线方程为x+2y=5,
答案:
8.【解析】假设所求直线的斜率存在,则可设其方程为y-2=k(x-1),即kx-y-k+2=0.
由题设有:
即k-1=7-k,解得k=4.
又所求直线的斜率不存在时,方程为x=1,符合题意.
故所求直线的方程为4x-y-2=0或x=1.
答案:4x-y-2=0或x=1
9.【解析】∵点A( ,1)在圆C:x2+(y-2)2=4的内部.
∴当劣弧所对的圆心角最小时,AC⊥l.
答案:
10.【解析】(1)显然两直线的斜率都存在,两条直线的方程可化为
故只需 ,即
即 两直线平行。
(2)方法一:若两直线的斜率都存在,则可得两条直线的斜率分别为 但由于 所以,此时两直线不垂直.
若m=0,则两条直线中一条斜率为0,另一条斜率不存在,于是两直线垂直.
综上可知,当m=0,且n∈R时,两直线垂直.
方法二:因为两直线垂直,所以只需2m+8m=0,
即m=0.故当m=0时,两直线垂直.
11.【解析】已知圆 ,
经平移后圆O的方程为
因为,
又
设直线 的方程是 交于
中并简化得
由题意:
所以,
因为,
所以,直线 的方程为 对应的点C的坐标为(-1,2)
或直线 的方程为 对应点C的坐标为(1,-2).
12.【解析】(1)设
解得 或 (舍去).
由题意知切线PA的斜率存在,设斜率为k.
所以直线PA的方程为 ,即
直线PA与圆M相切, ,解得 或
直线PA的方程是 或 ........6分
(2)设
与圆M相切于点A,
经过 三点的圆的圆心D是线段MP的中点.
的坐标是
设
当 ,即 时,
当 ,即 时,
当 ,即 时
则 .
【备课资源】
2.经过圆C:(x+1)2+(y-2)2=4的圆心且斜率为1的直线方程为( )
(A)x-y+3=0(B)x-y-3=00
(C)x+y-1=0(D)x+y+3=0
【解析】选A.圆C的圆心坐标为(-1,2),
故所求直线方程为y-2=1?(x+1),
即x-y+3=0.
3.直线x+y-2=0上的点和圆(x-6)2+(y-6)2=18上的点的最短距离是________.
5. 已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切,
(1)求直线l1的方程;
(2)设圆O与x轴交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.
求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.
【解析】(1)∵直线l1过点A(3,0),且与圆O:
x2+y2=1相切,由题意设直线l1的方程为
y=k(x-3),
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/68481.html
相关阅读:2012届高考数学第一轮导学案复习:二次函数
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐杭闁逞屽墮閸熸潙鐣烽妸褉鍋撳☉娅亝绂嶆潏銊х瘈闁汇垽娼у瓭闂佺ǹ锕ら顓犳閹炬剚娼╅柤鍝ユ暩閸樺崬顪冮妶鍡楀闁稿﹥娲熷鎼佸籍閸喓鍘藉┑鐘绘涧濡盯宕洪敐澶嬬厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛楠炲啳顦崇紒缁樼箞瀹曡埖顦版惔锝傛(闂傚倷绀侀幖顐ょ矙娓氣偓瀹曘垺绂掔€n偄浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪娴犙囨煙閸愬弶鍣洪柕鍥у閺佹劙宕ㄩ鐘荤崜缂傚倷鑳剁划顖滄崲閸儱鏄ラ柍褜鍓氶妵鍕箳瀹ュ浂妲銈嗘礋娴滃爼寮婚埄鍐ㄧ窞閻庯綆浜炴禒绋款渻閵堝啫鍔滅紒璇茬墕椤繐煤椤忓嫮顔愰梺缁樺姈瑜板啯淇婅濮婃椽宕ㄦ繝鍌氼潊闂佸搫鎳忕划宀勫煝閹惧顩烽悗锝庡亐閹锋椽鏌i悩鍙夋悙鐎殿喖鐖奸獮鎴︽晲婢跺鍘甸梺鎯ф禋閸嬪懐浜搁銏$叆闁哄洦锚閻忔煡鏌$仦鑺ヮ棞妞ゆ挸銈稿畷銊╊敊闁款垰浜炬い鎺戝閻撴稑顭跨捄鐚村姛濠⒀勫灴閺屾盯寮崸妤€寮伴梺闈涙閹虫ê顕f繝姘ㄩ柨鏃€鍎抽獮宥夋⒒娴h櫣甯涢柛銊﹀劶閹筋偆绱掗悙顒€绀冪€规洜鏁稿Σ鎰板箳濡ゅ﹥鏅╅梺鍏间航閸庨亶寮冲Δ鍐=濞达絼绮欓崫娲煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫬鏄ラ柍鈺佸暞婵挳寮堕悙闈涱暭闁稿鎳樺濠氬磼濞嗘劗銈板┑鈩冦仠閸旀垵顫忛挊澶樺悑濠㈣泛锕﹂敍娆忊攽閻樼粯娑фい鎴濇搐閻e灚绗熼埀顒勫箖濡ゅ懏鏅查幖绮瑰墲閻忓秹姊虹粙娆惧剾濞存粍绻堟俊鐢稿礋椤栨艾鍞ㄩ梺闈浤涚仦鐐啇濠碉紕鍋戦崐鏍蓟閵娿儍娲敇閻戝棙缍庡┑鐐叉▕娴滄粌顔忓┑鍡忔斀闁绘ɑ褰冮顏堟煕閿濆骸寮慨濠冩そ楠炴牠鎮欓幓鎺濇綂闂備胶枪椤戝棝宕濋弴銏犵叀濠㈣埖鍔栭崑銊х磼鐎n厽纭堕柛鏃撶畱椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姵鍋勯柛娑橈工瀵灝鈹戦埥鍡楃仯闁告鍛殰闁煎摜鏁哥粻楣冩煕濞戝崬鏋ら柟鍐叉噽缁辨帗娼忛妸銉х懖濠电偟鍘х换妯讳繆濮濆矈妲鹃梺浼欑到閵堢ǹ顫忔ウ瑁や汗闁圭儤绻冮ˉ鏍ㄧ節閻㈤潧浜归柛瀣尰缁绘繄鍠婃径宀€锛熼梺绋跨箲閿曘垹顕i锕€纾奸柣鎰綑娴犲ジ鏌h箛鏇炰户閺嬵亜霉濠婂懎浜鹃柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺閻犲洠鈧櫕鐏堥梺鎼炲灪閻擄繝宕洪姀鈩冨劅闁靛牆娲ㄩ弶鎼佹⒑閸︻叀妾搁柛銊у缁傚秹骞嗚閺€浠嬫煟濡櫣鏋冨瑙勧缚閻ヮ亪骞嗚閻撳ジ鏌$仦璇插闁宠鍨垮畷鍗烆潨閸℃﹫楠忓┑锛勫亼閸婃劙寮插┑瀣婵せ鍋撶€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻濞戭澁缍栭柍鍝勬噺閳锋垿寮堕悙鏉戭€滄い鏂款樀閺岋繝宕ㄩ姘f瀰濡ょ姷鍋涢崯浼村箲閸曨厽鍋橀柍鈺佸枤濞兼棃姊绘担鍛婃儓閻犲洨鍋ゅ畷姗€宕滆閸嬫挻娼忛埡鍐紳闂佺ǹ鏈懝楣冨焵椤掆偓閹芥粎鍒掗弮鍫燁棃婵炵娅曢惄顖氱暦濮椻偓椤㈡瑩鎳栭埡鍐╃€梻鍌欐祰椤鐣峰鈧、姘愁槻妞ゆ柨绻愰埞鎴﹀炊閵夈倗鐩庨梻浣告惈閸燁偄煤閵堝牜鏆遍梻浣筋嚙鐎涒晜绌遍崫鍕ㄦ瀺闁哄洨濮靛畷鍙夌箾閹寸偛鐒归柛瀣尭閳藉鈻庣€n剛绐楅梻浣规た閸樺ジ顢栭崨瀛樼畳婵犵數濮磋墝闁稿鎸剧槐鎺楊敊閻e本鍣伴悗瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喖宕崟顒夋婵炲瓨绮撶粻鏍ь潖閾忓湱鐭欓柛鏍も偓鍐差潬闂備胶顢婂▍鏇㈠箲閸ヮ剙鏋侀柛鎰靛枛椤懘鏌曢崼婵囧櫧妞ゆ挾鍘ч—鍐Χ閸℃ǚ鎷归梺绋块閸熷潡鎮鹃悜钘壩ㄩ柕澶堝灪閺傗偓闂備胶绮崝鏇烆嚕閸泙澶娾堪閸曨厾顔曢柣搴f暩鏋柛妯绘尦閺岀喖顢涘鍐差伃闂佷紮绲剧换鍫濈暦閻旂⒈鏁嗛柛灞捐壘缁犮儳绱撻崒姘偓鎼佸磹閻戣姤鍊块柨鏇炲€归弲顏勨攽閻樻剚鍟忛柛鐘崇墵瀹曨垶骞嶉绛嬫綗闂佸湱鍎ゅ鐟扮暦婢舵劖鐓i煫鍥ㄧ▓閸嬫挸鈽夊鍨涙敽缂傚倸鍊搁崐椋庣矆娓氣偓閹矂宕掑☉姘兼锤闂佸壊鍋呭ú鏍及閵夆晜鐓曢柡鍥ュ妼閻忕姷绱掗埀顒勫礃椤忓懎鏋戦棅顐㈡处濞叉粓鎯岄崱娑欑厓鐟滄粓宕滈悢濂夋綎闁惧繗顫夌€氭岸鏌熺紒妯轰刊闁告柨顦辩槐鎾存媴閸撴彃鍓遍柣銏╁灲缁绘繂顕i銈傚亾閿濆骸鏋熼柍閿嬪灩缁辨帞鈧綆鍋掗崕銉╂煕鎼达紕绠崇紒杈ㄥ笚瀵板嫭绻濋崒銈嗘闂備礁鎲$敮妤冩暜閹烘缍栨繝闈涱儛閺佸嫰鏌i幇顒傛憼闁靛洦绻冮妵鍕閳╁喚妫冮悗瑙勬处娴滎亜鐣峰鈧、鏃堝礋椤掆偓閸旀帡姊婚崒姘偓鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹《閸撴繈鎮疯閹矂骞樼紒妯衡偓鍨箾閹寸儐浼嗛柟杈剧畱閻鐓崶銊р姇闁绘挾鍠栭弻锟犲磼濮樺彉铏庨梺璇″枟閸ㄥ潡寮婚敓鐘叉そ濞达絿枪閳峰姊虹拠鈥虫灍闁挎洏鍨介獮鍐ㄢ枎閹寸偛纾柡澶屽仧婢ф鎯堣箛娑欌拻濞达綀妫勯崥褰掓煕閻樺啿濮夐柟骞垮灲瀹曞ジ濡烽妷銊︽啺闂備胶绮濠氬储瑜斿畷娆撴偐閻愭垝绨婚梺瑙勫閺呮盯鎮橀埡浣叉斀妞ゆ棁濮ょ粈鈧梺瀹狀潐閸ㄥ潡骞冮埡鍜佹晝妞ゎ偒鍘奸ˉ姘節閻㈤潧浠﹂柟绋款煼瀹曟椽宕橀鑲╋紱闂佸湱鍋撻幆灞解枔娴犲鐓熼柟閭﹀灠閻ㄦ椽寮崼銉︹拺缂侇垱娲橀弶褰掓煕鐎n偅灏い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑礈濞戙垹鐒垫い鎺嶆祰婢规ɑ銇勯敂璇茬仸闁炽儻濡囬幑鍕Ω閿曗偓绾绢垱绻涢幘鏉戝毈闁搞劋鍗冲畷婊勬綇閳哄啰锛濋梺绋挎湰濮樸劏鈪甸梻浣呵归鍡涘箲閸パ屾綎缂備焦蓱婵挳鏌i悢鐓庝喊闁搞倕顑囩槐鎾存媴閸撴彃鍓遍梺鎼炲妼婢у海绱撻幘瀵割浄閻庯綆浜為惈鍕⒑缁嬫寧婀扮紒顔奸叄閹箖鎳滈悽鐢电槇闂侀潧楠忕徊浠嬫偂閹扮増鐓曢柡鍐e亾婵炲弶绮庨崚鎺撶節濮橆儵銊╂煃閸濆嫬鈧宕㈤悽鐢电=濞达絽澹婇崕蹇旂箾绾绡€妞ゃ垺鎸歌灃濞达絽鍚€缁ㄥ鏌熼崗鑲╂殬闁搞劌鎼悾宄扮暆閸曨剛鍘搁悗鍏夊亾閻庯綆鍓涜ⅵ闂備胶纭堕弲顏嗘崲濠靛棛鏆︽俊銈呮噺閺呮繈鏌嶈閸撴稓妲愰悙瀵哥瘈闁稿本绮嶅▓楣冩⒑閹稿海绠撻柣妤佺矊鍗卞┑鐘崇閳锋垹鈧娲栧ú銊ф暜濞戞瑤绻嗘い鎰╁灩閺嗘瑦銇勯弴顏嗙М妤犵偞锕㈤、娆撴寠婢跺棗浜鹃柣鎴eГ閻撴洟鐓崶銊﹀鞍闁瑰弶鎮傞弻锝夘敇閻曚焦鐤佸┑顔硷攻濡炰粙骞婇敓鐘参ч柛娑樻嫅缂嶄線寮诲☉銏犳闁绘劕寮堕崳鍦磼闊彃鈧洟鍩為幋锕€纾兼繝褎鎸稿﹢杈╁垝婵犳艾钃熼柕澶涘閸橆亪妫呴銏℃悙妞ゆ垵鎳橀崺鈧い鎺嶇劍缁€澶岀磼缂佹ê鍝烘慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭礋椤愩値妲遍梻浣藉吹閸犳劙宕抽弶鎳ㄦ椽顢旈崟骞喚鐔嗛悹杞拌閸庢垿鏌涘Ο鍝勮埞闁宠鍨块幃娆撳矗婢舵ɑ锛侀梻浣告啞濮婄懓煤閻旂厧绠栨慨妞诲亾闁糕晪绻濆畷鎺楀Χ閸♀晛鏅梻鍌欒兌缁垶宕濋弴鐑嗗殨闁割偅娲栫粣妤佷繆椤栨氨姣為柛瀣尭閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝堝€介弮鍫濆窛妞ゆ挾濯寸槐鍙夌節閻㈤潧孝闁挎洏鍊濆畷顖炲箮缁涘鏅╂繝銏e煐閸旀牠鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧鎾诲蓟閿濆憘鏃堝焵椤掆偓铻炴繝闈涳攻椤ャ倝姊绘担绛嬫綈妞ゆ梹鐗犲畷鏉款潩閼搁潧鍓归梺鐟板⒔缁垶鎮¢弴銏$叆闁哄啫娴傞崵娆愵殽閻愭潙濮嶉柡灞剧〒閳ь剨缍嗛崑鍛焊椤撶喆浜滄い鎰剁悼缁犵偞銇勯姀鈽嗘畷闁瑰嘲鎳愰幉鎾礋椤愵偂绱楁繝鐢靛Х閺佸憡鎱ㄩ幘顔藉剦濠㈣埖鍔曞洿闂佸憡娲﹂崑鍛村磿閹剧粯鈷掑ù锝囩摂閸ゅ啴鏌涢敐搴℃珝鐎规洘濞婇弫鎰緞閸艾浜惧ù锝堝€介悢鐑樺仒闁斥晛鍟弶鎼佹⒑鐠囨彃鍤辩紓宥呮瀹曟垿宕ㄧ€涙ê浠奸梺鍓插亝濞叉﹢鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧濠囧Φ閸曨噮妲烽梺绋款儐閹瑰洤顫忓ú顏呭仭闁哄瀵ч鈧梻浣烘嚀閸ゆ牠骞忛敓锟�/闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁冮柨鏇楀亾闁汇倗鍋撶换婵囩節閸屾稑娅ら悗瑙勬礃閻擄繝寮诲☉銏犵疀闁稿繐鎽滈崙褰掓⒑缁嬭法绠茬紒顔芥崌瀵濡堕崶鈺冪厯闁荤姵浜介崝瀣垝閸偆绠鹃悗娑櫭▓鐘绘煕婵犲啰澧遍柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏﹂悽顖滃仜閿曘垽宕ㄩ娑欐杸闂佺粯鍔栬ぐ鍐箖閹达附鐓曢柡鍐e亾闁荤啿鏅涢锝嗙節濮橆厽娅滄繝銏f硾璋╅柍鍝勬噺閻撳繐顭跨捄铏瑰闁告梹娼欓湁闁绘ê鐪伴崑銏℃叏婵犲啯銇濈€规洦鍋婃俊鐑藉Ψ閵堝洦宕熷┑锛勫亼閸婃牕煤閿曞倸鐭楅柛鎰靛枛閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁糕剝銇炴竟鏇熺節閻㈤潧袥闁稿鎹囬弻娑樜旈崘銊ゆ睏闂佸搫顑呯粔褰掑蓟閺囷紕鐤€閻庯綆浜炴禒鎯ь渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灦閼归箖路閳ь剟姊虹拠鎻掝劉缁炬澘绉撮~婵嬪Ω閳轰胶鍔﹀銈嗗笒閸婂綊宕甸埀顒勬煟鎼淬垹鍤柛妯恒偢閳ワ箓宕归銉у枛閹剝鎯旈敐鍥╂憣濠电姷鏁搁崑娑樜熸繝鍐洸婵犻潧顑呴悡鏇㈡煙鐎电ǹ浜煎ù婊勭矒閺岀喖寮堕崹顕呮殺缂佺偓宕樺▔鏇犳閹烘绠涙い鎾跺櫏濡啴姊洪崫鍕拱缂佸鎹囬崺鈧い鎺戯功缁夌敻鏌涚€n亝顥為柡鍛埣椤㈡宕掑⿰鍜冪床闂備胶枪閺堫剛绮欓幋婢濆綊顢欑粵瀣啍闂佺粯鍔曞鍫曀夐姀鈶╁亾濞堝灝鏋涢柣鏍с偢閻涱噣骞囬鐔峰妳濡炪倖鏌ㄩ崥瀣枍閿燂拷 4509422@qq.com 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵婢樿灃闁挎繂鎳庨弳娆戠棯閹岀吋闁哄瞼鍠栭獮鍡氼槾闁圭晫濞€閺屾稑鈻庤箛鏇狀啋闂佸搫鏈ú鐔风暦閻撳簶鏀介柟閭﹀帨瑜斿娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幋鐐茬/闁哄鍋熸晶妤呮儓韫囨柧绻嗛柣鎰典簻閳ь剚娲滈幑銏犖旀担渚锤濡炪倖甯掗崐褰掞綖閺囥垺鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋斀闁告洦鍋勬慨銏狀渻閵堝棙鐓ユい锕傛涧椤繘鎼归崷顓狅紲濠碘槅鍨崇划顖炲磿閹惧墎纾藉ù锝勭矙閸濈儤绻涢懠顒€鏋涚€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粍鍎抽埞鎴︽偐椤愵澀澹曢梻鍌欑贰閸撴瑧绮旂€电ǹ顥氶柛褎顨嗛悡娆撴倵閻㈢櫥瑙勭墡婵$偑鍊ら崑鍛哄Ο鍏煎床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆閺岋絾鎯旈姀锝咁棟濡炪倧缂氶崡铏繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊洪悷鎵憼缂佹椽绠栧畷鎴﹀箻鐠囨彃寮烽棅顐㈡搐椤戝嫬效濡ゅ懏鈷戦柛婵嗗椤箓鏌涙惔銏㈠弨鐎规洘鍔欏畷濂稿即閻樻彃绲奸梻浣规偠閸庮垶宕濆鍥︾剨闁绘鐗勬禍婊堟煏婢诡垰鍟犻弸鍛存⒑閸濆嫮鐒跨紒韫矙閸╃偤骞嬮敃鈧悙濠囨煃閸濆嫬鈧悂宕归柆宥嗙厽閹兼番鍊ゅḿ鎰箾閸欏顏堬綖濠靛惟闁宠桨鑳堕鍡涙⒑缂佹〒褰掝敋瑜忕划濠氭偨閸涘﹦鍘甸梺缁樺灦钃遍柣鎿勭秮閺岀喖顢氶崱娆懶滃┑顔硷工椤嘲鐣烽幒鎴僵妞ゆ垼妫勬禍楣冩煕濠靛嫬鍔楅柛瀣尭椤繈濡烽妷銉綆闁诲氦顫夊ú姗€宕濆▎鎾跺祦閻庯綆鍠楅弲婵嬫煃瑜滈崜鐔煎箖閻愬搫鍨傛い鎰С缁ㄥ姊洪崷顓炲妺闁糕晛锕銊︾節濮橆厼鈧灚鎱ㄥΟ鐓庝壕閻庢熬鎷�