六、机械能(3)
【课 题】动能定理
【导学目标】
1、正确理解动能的概念。
2、理解动能定理的推导与简单应用。
【知识要点】
一、动能
1、物体由于运动而具有的能叫动能,表达式:Ek=_____________。
2、动能是______量,且恒为正值,在国际单位制中,能的单位是________。
3、动能是状态量,公式中的v一般是指________速度。
二、动能定理
1、动能定理:作用在物体上的________________________等于物体____________,即w=_________________,动能定理反映了力对空间的积累效应。
2、注意:①动能定理可以由牛顿运动定律和运动学公式导出。②可以证明,作用在物体上的力无论是什么性质,即无论是变力还是恒力,无论物体作直线运动还是曲线运动,动能定理都适用。
3、动能定理最佳应用范围:动能定理主要用于解决变力做功、曲线运动、多过程动力学问题,对于未知加速度a和时间t,或不必求加速度a和时间t的动力学问题,一般用动能定理求解为最佳方案。
【典型剖析】
[例1] 在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5cos(kx+ π)(单位: m),式中k=1 m-1.将一光滑小环套在该金属杆上,并从x=0处以v0=5 m/s的初速度沿杆向下运动,取重力加速度g=10 m/s2.则当小环运动到x= m时的速度大小v= m/s;该小环在x轴方向最远能运动到x= m处.
[例2]如图所示,质量为m的小球用长为L的轻细线悬挂在天花板上,小球静止在平衡位置.现用一水平恒力F向右拉小球,已知F=0.75mg,问:
(1)在恒定拉力F作用下,细线拉过多大角度时小球速度最大?(2)小球的最大速度是多少?
[例3]总质量为M的列车,沿平直轨道作匀速直线运动,其末节质量为m的车厢中途脱钩,待司机发觉时,机车已行驶了L的距离,于是立即关闭油门撤去牵引力.设运动过程中阻力始终与质量成正比,机车的牵引力是恒定的.当列车的两部分都停止时,它们之间的距离是多少?
[例4]如图所示,质量为mA的物块A放在水平桌面上,为了测量A与桌面间的动摩擦因数?,用细线通过滑轮与另一个质量为mB的物体连接,开始时B距地面高度为h,A、B都从静止开始运动,最后停止时测得A沿桌面移动距离为s。
根据上述数据某同学这样计算,B下降时通过细线对A做功,A又克服摩擦力做功,两者相等,所以有:mBgh=?mAgs,?=mBh/mAs。
你认为该同学的解法正确吗?请做出评价并说明理由。如果你认为该同学解法不对,请给出正确解答。
[例5](湖南省长沙市一中2010届高三联考)如图甲所示,某同学用轻绳通过定滑轮提升一重物,运用传感器(未在图中画出)测得此过程中不同时刻对轻绳的拉力F与被提升重物的速度v,并描绘出F- 图象。假设某次实验所得的图象如图乙所示,其中线段AB与 轴平行,它反映了被提升重物在第一个时间段内F和 的关系;线段BC的延长线过原点(C点为实线与虚线的分界点),它反映了被提升重物在第二个时间段内F和 的关系;第三个时间段内拉力F和速度v均为C点所对应的大小保持不变,因此图象上没有反映。实验中还测得重物由静止开始经过t=1.4s,速度增加到vC=3.0m/s,此后物体做匀速运动。取重力加速度g=10m/s2,绳重及一切摩擦和阻力均可忽略不计。
(1)在提升重物的过程中,除了重物的质量和所受重力保持不变以外,在第一时间段内和第二时间段内还各有一些物理量的值保持不变。请分别指出第一时间段内和第二时间内所有其他保持不变的物理量,并求出它们的大小;
(2)求被提升重物在第一时间段内和第二时间段内通过的总路程。
【训练设计】
1、(河南省武陟一中2010届高三第一次月考)一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示。设该物体在 和 时刻相对于出发点的位移分别是 和 ,速度分别是 和 ,合外力从开始至 时刻做的功是 ,从 至 时刻做的功是 ,则( )
A. B.
C. D.
2、(海南省海口市2010届高三调研测试)轮滑运动员与滑轮总质量为M,运动员手托着一个质量为m的彩球,在半圆形轨道上及空中进行表演,如图所示。运动员从半圆轨道边缘a由静止开始下滑,冲上轨道另一边等高点b后继续竖直上升,到达最高点时立即竖直上抛手中的彩球。彩球从手中抛出到最高点时间t恰等于运动员离开b点运动到最高点时的时间。设在半圆形轨道运动过程中需要克服阻力做功为Wf,不计空气阻力。
求:(1)人抛出彩球时对彩球所做的功。
(2)人在圆形轨道中所做的功。
3、如图所示,一根轻弹簧竖直放置在地面上,上端为O点.某人将质量为m的物块放在弹簧上端O处,使它缓缓下落到A处,放手后物块处于平衡,在此过程中物块克服人的作用力做功为W,如果将物块从距轻弹簧上端O点H高处释放,物块自由落下,落到弹簧上端O点后,继续下落将弹簧压缩,那么物块将弹簧压缩到A处时,物块速度的大小是多少?(不计碰撞过程中能量损失)
4.(南通市部分重点中学高三三模调研试题)如图所示,绘出了汽车刹车时刹车痕(即刹车距离)与刹车前车速的关系。v为车速,s为车痕长度。
(1)尝试用动能定理解释汽车刹车距离与车速的关系。
(2)若某汽车发生了车祸,已知该汽车刹车时的刹车距离与刹车前车速关系满足图示关系。交通警察要根据碰撞后两车的损害程度(与车子结构相关)、撞后车子的位移及转动情形等来估算碰撞时的车速。同时还要根据刹车痕判断撞前司机是否刹车及刹车前的车速。若估算出碰撞时车子的速度为45km/h,碰撞前的刹车痕为20m,则车子原来的车速是多少?
5、如图所示,在倾角为θ的斜面上,一物块通过轻绳牵拉压紧弹簧.现将轻绳烧断,物块被弹出,与弹簧分离后即进入足够长的N N / 粗糙斜面(此前摩擦不计),沿斜面上滑达到最远点位置离N距离为S.此后下滑,第一次回到N处,压缩弹簧后又被弹离,第二次上滑最远位置离N距离为S/2.求:
(1)物块与粗糙斜面间的动摩擦因素;
(2)物体最终克服摩擦力做功所通过的路程.
6.(山东省潍坊市2010届高三上学期阶段性测试)如图,ABCD为一竖直平面的轨道,其中BC水平,A点比BC高出10米,BC长1米,AB和CD轨道光滑。一质量为1千克的物体,从A点以4米/秒的速度开始运动,经过BC后滑到高出C点10.3m的D点速度为零。求:(g=10m/s2)
(1)物体与BC轨道的滑动摩擦系数。
(2)物体第5次经过B点时的速度。
(3)物体最后停止的位置(距B点)。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/80701.html
相关阅读: