第十一章 概率
●网络体系总览
●考点目标定位
1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.
2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.
3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.
●复习方略指南
概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.
在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.
11.1 随机事件的概率
●知识梳理
1.随机事件:在一定条件下可能发生也可能不发生的事件.
2.必然事件:在一定条件下必然要发生的事件.
3.不可能事件:在一定条件下不可能发生的事件.
4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.
5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是 .如果某个事件A包含的结果有m个,那么事件A的概率P(A)= .
6.使用公式P(A)= 计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.
●点击双基
1.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是
A. B. C. D.
解析:基本事件总数为C ,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C ,后者C C .
∴A中基本事件数为C +C C .
∴符合要求的概率为 = .
答案:C
2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为
A. B. C. D.
解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .
∴所求概率为 = .
答案:B
3.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是
A. B. C. D.
解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为 = ,由对立事件概率公式,知3次至少出现一次6点向上的概率是1- = .
答案:D
4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.
解析:恰有3个红球的概率P1= = .
有4个红球的概率P2= = .
至少有3个红球的概率P=P1+P2= .
答案:
5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.
解析:P= = .
答案:
●典例剖析
【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.
解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 种,另一个不同数字的取法有C 种.而这取出的五个数字共可排出C 个不同的五位数,故恰有4个相同数字的五位数的结果有C C C 个,所求概率
P= = .
答:其中恰恰有4个相同数字的概率是 .
【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是 ,求该班中男女生相差几名?
解:设男生有x名,则女生有(36-x)人,选出的2名代表是同性的概率为P= = ,
即 + = ,
解得x=15或21.
所以男女生相差6人.
【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:
(1)无空盒的概率;
(2)恰有一个空盒的概率.
解:4个球任意投入4个不同的盒子内有44种等可能的结果.
(1)其中无空盒的结果有A 种,所求概率
P= = .
答:无空盒的概率是 .
(2)先求恰有一空盒的结果数:选定一个空盒有C 种,选两个球放入一盒有C A 种,其余两球放入两盒有A 种.故恰有一个空盒的结果数为C C A A ,所求概率P(A)= = .
答:恰有一个空盒的概率是 .
深化拓展
把n+1个不同的球投入n个不同的盒子(n∈N*).求:
(1)无空盒的概率;(2)恰有一空盒的概率.
解:(1) .
(2) .
【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
解:5把钥匙,逐把试开有A 种等可能的结果.
(1)第三次打开房门的结果有A 种,因此第三次打开房门的概率P(A)= = .
(2)三次内打开房门的结果有3A 种,因此,所求概率P(A)= = .
(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A A 种,从而三次内打开的结果有A -A A 种,所求概率P(A)= = .
方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C A A A 种;三次内恰有2次打开的结果有A A 种.因此,三次内打开的结果有C A A A +A A 种,所求概率
P(A)= = .
特别提示
1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)= = 或P(A)= ? ? = .
2.仿照1中,你能解例题中的(2)吗?
●闯关训练
夯实基础
1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为
A. B. C. D.
解析:P= = .
答案:B
2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是
A. B. C. D.
解析:甲、乙二人依次抽一题有C ?C 种方法,
而甲抽到判断题,乙抽到选择题的方法有C C 种.
∴P= = .
答案:C
3.从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为
A. B. C. D.
解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.
∴概率为 = .
答案:D
4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)
解析:总的排法有A 种.
最先和最后排试点学校的排法有A A 种.
概率为 = .
答案:
5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.
解:(1)基本事件总数甲、乙依次抽一题有C C 种,事件A包含的基本事件数为C C ,故甲抽到选择题,乙抽到判断题的概率为 = .
(2)A包含的基本事件总数分三类:
甲抽到选择题,乙抽到判断题有C C ;
甲抽到选择题,乙也抽到选择题有C C ;
甲抽到判断题,乙抽到选择题有C C .
共C C +C C +C C .
基本事件总数C C ,
∴甲、乙二人中至少有一人抽到选择题的概率为 = 或P( )= = ,P(A)=1-P( )= .
6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:
(1)每盒各有一个奇数号球的概率;
(2)有一盒全是偶数号球的概率.
解:6个球平均分入三盒有C C C 种等可能的结果.
(1)每盒各有一个奇数号球的结果有A A 种,所求概率P(A)= = .
(2)有一盒全是偶数号球的结果有(C C )?C C ,
所求概率P(A)= = .
培养能力
7.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:
(1)A、B两组中有一组恰有两支弱队的概率;
(2)A组中至少有两支弱队的概率.
(1)解法一:三支弱队在同一组的概率为
+ = ,
故有一组恰有两支弱队的概率为1- = .
解法二:有一组恰有两支弱队的概率为
+ = .
(2)解法一:A组中至少有两支弱队的概率为 + = .
解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为 .
8.从1,2,…,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.
解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C ?72+C ?7+C ,
所求概率P(A)= =0.169.
答:最小数为3的概率为0.169.
探究创新
9.有点难度哟!
将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.
(1)若点P(a,b)落在不等式组 表示的平面区域的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
解:(1)基本事件总数为6×6=36.
当a=1时,b=1,2,3;
当a=2时,b=1,2;
当a=3时,b=1.
共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,
∴P(A)= = .
(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P= = 最大.
●思悟小结
求解等可能性事件A的概率一般遵循如下步骤:
(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.
(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.
(3)应用等可能性事件概率公式P= 计算.
●教师下载中心
点睛
1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.
2.随机事件A的概率P(A)满足0≤P(A)≤1.
(3)P(A)= 既是等可能性事件的概率的定义,又是计算这种概率的基本方法.
拓展题例
【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?
解:P(A)= = .
答:顾客按所定的颜色得到定货的概率是 .
【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}=A,{第三个球是红球}=B.求在下列条件下事件A、B的概率.
(1)不返回抽样;
(2)返回抽样.
解:(1)不返回抽样,
P(A)= = ,P(B)= = .
(2)返回抽样,
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaosan/81093.html
相关阅读: