高一数学必修一集合练习试题及答案

编辑: 逍遥路 关键词: 高一 来源: 高中学习网

【导语】青春是一场远行,回不去了。青春是一场相逢,忘不掉了。但青春却留给我们最宝贵的友情。友情其实很简单,只要那么一声简短的问候、一句轻轻的谅解、一份淡淡的惦记,就足矣。当我们在毕业季痛哭流涕地说出再见之后,请不要让再见成了再也不见。这篇《高一数学必修一集合练习试题及答案》是逍遥右脑为你整理的,希望你喜欢!

  一、选择题

  1.下列各组对象能构成集合的有()

  ①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学

  A.1个B.2个

  C.3个D.4个

  【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.

  【答案】A

  2.小于2的自然数集用列举法可以表示为()

  A.0,1,2B.1

  C.0,1D.1,2

  【解析】小于2的自然数为0,1,应选C.

  【答案】C

  3.下列各组集合,表示相等集合的是()

  ①M=(3,2),N=(2,3);②M=3,2,N=2,3;③M=(1,2),N=1,2.

  A.①B.②

  C.③D.以上都不对

  【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.

  【答案】B

  4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()

  A.2B.2或4

  C.4D.0

  【解析】若a=2,则6-a=6-2=4∈A,符合要求;

  若a=4,则6-a=6-4=2∈A,符合要求;

  若a=6,则6-a=6-6=0∉A,不符合要求.

  ∴a=2或a=4.

  【答案】B

  5.(2018•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()

  A.x≠0B.x≠-1

  C.x≠0且x≠-1D.x≠0且x≠1

  【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.

  【答案】C

  二、填空题

  6.用符号“∈”或“∉”填空

  (1)22________R,22________x<7;

  (2)3________x;

  (3)(1,1)________y;

  (1,1)________(x,y).

  【解析】(1)22∈R,而22=8>7,

  ∴22∉x.

  (2)∵n2+1=3,

  ∴n=±2∉N+,

  ∴3∉x.

  (3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而y表示二次函数函数值构成的集合,

  故(1,1)∉y.

  集合y=x2表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,

  ∴(1,1)∈y=x2.

  【答案】(1)∈∉(2)∉(3)∉∈

  7.已知集合C=63-x∈Z,x∈N*,用列举法表示C=________.

  【解析】由题意知3-x=±1,±2,±3,±6,

  ∴x=0,-3,1,2,4,5,6,9.

  又∵x∈N*,

  ∴C=1,2,4,5,6,9.

  【答案】1,2,4,5,6,9

  8.已知集合A=-2,4,x2-x,若6∈A,则x=________.

  【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.

  【答案】-2或3

  三、解答题

  9.选择适当的方法表示下列集合:

  (1)绝对值不大于3的整数组成的集合;

  (2)方程(3x-5)(x+2)=0的实数解组成的集合;

  (3)一次函数y=x+6图像上所有点组成的集合.

  【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为-3,-2,-1,0,1,2,3;

  (2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为53,-2;

  (3)一次函数y=x+6图像上有无数个点,用描述法表示为y=x+6.

  10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.

  【解】由-3∈A,得a-2=-3或2a2+5a=-3.

  (1)若a-2=-3,则a=-1,

  当a=-1时,2a2+5a=-3,

  ∴a=-1不符合题意.

  (2)若2a2+5a=-3,则a=-1或-32.

  当a=-32时,a-2=-72,符合题意;

  当a=-1时,由(1)知,不符合题意.

  综上可知,实数a的值为-32.

  11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.

  【解】∵2∈A,由题意可知,11-2=-1∈A;

  由-1∈A可知,11--1=12∈A;

  由12∈A可知,11-12=2∈A.

  故集合A中共有3个元素,它们分别是-1,12,2.


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoyi/1199836.html

相关阅读:2019高一年级数学期中考试试卷[1]