1.1.1 棱柱、棱锥、棱台的结构特征
学习目标
1. 感受空间实物及模型,增强学生的直观感知;
2. 能根据几何结构特征对空间物体进行分类;
3. 理解多面体的有关概念;
4. 会用语言概述棱柱、棱锥、棱台的结构特征.
学习过程
一、前准备
(预习教材P2~ P4,找出疑惑之处)
引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们研究它们吧!
二、新导学
※ 探索新知
探究1:多面体的相关概念
问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?
新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.具体如下图所示:
探究2:旋转体的相关概念
问题:仔细观察下列物体的相同点是什么?
新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:
探究3:棱柱的结构特征
问题:你能归纳下列图形共同的几何特征吗?
新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)
试试1: 你能指出探究3中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究3中的棱柱分类吗?
新知4:①按底面多边形的边数分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…
②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).
试试2: 探究3中有几个直棱柱?几个斜棱柱?棱柱怎么表示呢?
新知5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱 — .
探究4:棱锥的结构特征
问题:探究1中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢?
新知6:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥 .
探究5:棱台的结构特征
问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢?
新知7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.
试试3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出.
反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?
※ 典型例题
例 由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?
三、提升
※ 学习小结
1. 多面体、旋转体的有关概念;
2. 棱柱、棱锥、棱台的结构特征及简单的几何性质.
※ 知识拓展
1. 平行六面体:底面是平行四边形的四棱柱;
2. 正棱柱:底面是正多边形的直棱柱;
3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;
4. 正棱台:由正棱锥截得的棱台叫做正棱台.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成( ).
A.棱锥 B.棱柱 C.平面 D.长方体
2. 棱台不具有的性质是( ).
A.两底面相似 B.侧面都是梯形
C.侧棱都相等 D.侧棱延长后都交于一点
3. 已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则( ).
A.
B.
C.
D.它们之间不都存在包含关系
4. 长方体三条棱长分别是 =1 =2, ,则从 点出发,沿长方体的表面到C′的最短矩离是_____________.
5. 若棱台的上、下底面积分别是25和81,高为4,则截得这棱台的原棱锥的高为___________.
后作业
1. 已知正三棱锥S-ABC的高SO=h,斜高(侧面三角形的高)S=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.
2. 在边长 为正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为 .问折起后的图形是个什么几何体?它每个面的面积是多少?
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoyi/34287.html
相关阅读:棱柱、棱锥和棱台