【必修1 】第 二 函 数
小结与复习
学时: 1学时
【学习引导】
一、自主学习
1. 阅读本P53---P54
2. 回答问题
(!)按照学习要求中的两个部分,做出本知识框图
(2)总结本知识中蕴涵的方法和规律.
二、方法指导
本节是一堂复习,.同学们要认真复习并运用函数的性质(单调性)求一些简单函数的最值和值域,要掌握二次函数的图像,性质,最值,并总结数学活动中获取的数学经验,领悟类比、从特殊到一般的数学方法,体会数形结合等思想方法.感受数学与生活的相互关系.
【思考引导】
一、提问题
1. 你能用集合的语言表述函数吗?
2. 你能根据具体的情境,用图像法、列表法、解析法表示函数吗?
3. 如何判断和证明函数的单调性?
4. 你会对二次函数配方,并讨论其图像的开口方向、大小,顶点,对称轴等性质吗?
5. 函数与映射的联系差异是什么?
二、变题目
1.下列各对函数中,相同的是( )
A、
B、
C、
D、f(x)=x,
2. 给出下列四个图形,其中能表示从集合到集合N的函数关系的有( )
A、 0个 B、 1个 C、 2个 D、3个
3.已知函数 在区间 上是增函数,则 的范围是( )
(A) (B) (C) (D)
4 .函数 对一切实数恒成立, 的取值范围( )
A. B. C. D.
5 .求证: 在区间 上是单调减函数,在区间 上单调增函数.
【总结引导】
1. 本知识结构图:
2. 映射
(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
3. 函数
构成函数概念的三要素 ①定义域②对应法则③值域
两个函数是同一个函数的条:三要素有两个相同
4.在函数 的定义域内的一个区间A上,如果对于 两个数 A.
(1)当 时,称函数 在区间A上是递增的,此时区间A称为函数 的 ;
(2)当 时,称函数 在区间A上是递减的,此时区间A称为函数 的 .
5.定义法证明函数单调性的步骤:(1) (2)(3)(4)(5).
6.二次函数(涉及二次函数问题必画图分析)
(1).二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴 ,
顶点坐标
(2).二次函数与一元二次方程关系
一元二次方程 的根为二次函数f(x)=ax2+bx+c(a≠0) 的 的取值。
一元二次不等式 的解集(a>0)
二次函数△情况一元二次不等式解集
Y=ax2+bx+c (a>0)△=b2-4acax2+bx+c>0
(a>0)ax2+bx+c<0
(a>0)
图象与解
△>0
△=0
△<0R
7. 函数的图象变换
平移变换: (左+ 右- ,上+ 下- )即
【拓展引导】
一、外作业:P32 B组 2
二、外思考:
判断函数 的单调性。
参考答案
【思考引导】
二,变题目
1.C
2.B
3.A
4.C
5.略
【拓展引导】
单调减函数
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoyi/41673.html
相关阅读:函数概念的应用
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�