应用已知函数模型解决实际问题

编辑: 逍遥路 关键词: 高一 来源: 高中学习网
M
§3.2.2 函数模型的应用实例
第一课时 应用已知函数模型解决实际问题

课前预习学案
一.预习目标:熟悉几种常见的函数增长型
二.预习内容:阅读课本内容思考:主要的函数增长性有哪些
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容



课内探究学案
一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.
学习重点:运用一次函数、二次函数模型解决一些实际问题.
学习难点:将实际问题转变为数学模型.
二.学习过程
解决实际问题的步骤
1)首先建立直角坐标系,画出散点图;
2)根据散点图设想比较接近的可能的函数模型:
一次函数模型:
二次函数模型:
幂函数模型:
指数函数模型: ( >0, )
利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.

例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?


变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶. 试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.


例2 要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.



变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量 与月份的 关系,模拟函数可以选用二次函数或函数 .已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.



课后练习与提高
一.选择题
1.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是( )

A. B. C. D.
2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( )
A.10%B.20%C.5%D.11.1%
3.今有一组实验数据如下:

1.993.04.05.16.12

1.54.047.51218.01
现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是( )
A. B. C. D.
二.填空题
4.假设某商品靠广告销售的收入R与广告费A之间满足关系R= ? ,那么广告效应为 ,当A= 时,取得最大广告效应.
5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个
三.解答题
6. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.?
(1)求y关于x的函数;?
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.?




参考答案

本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoyi/58167.html

相关阅读:函数概念的应用