函数的零点

编辑: 逍遥路 关键词: 高一 来源: 高中学习网


§2.5 函数的零点(一)
【学习目标】:
理解函数(结合二次函数)零点的概念,领会函数零点与相应方程根的关系,掌握零点存在的判定条件.

【过程】:
一、复习引入:
1.试解出下列方程的近似解:(1) (2)
2.二次函数的解析式:
(1)一般式 (2)顶点式 (3)零点式

二、新课讲授:
思考1.下列两个问题的结果是否相同:
(1)求一元二次方程 的根;
(2)求二次函数 的图象与 轴的交点的横坐标。
1.零点定义:一般地,我们把 称为函数 的零点。
思考2.判断下列函数的零点的个数:
1) ; 2) ; 3) ;
4) ; 5) .
思考3.函数 的零点与方程 及函数 的图象有何关系?
思考4.函数 的零点是点还是数?
思考5.已知 ,求函数 的零点.
思考6.零点存在性的探索:
(1)观察二次函数 的图象:
① = , = , 0 在区间 上 (有/无)零点.
② 0(<或>) 在区间 上 (有/无)零点.
(2)观察函数 的图象:
(1)在区间 上 (有/无)零点;
0(“<”或“>”)。
(2)在区间 上 (有/无)零点;
0(“<”或“>”)。
(3)在区间 上 (有/无)零点;
0(“<”或“>”)。
由以上的探索你可以得出什么结论?
2.零点的存在性定理:一般地,若函数 在 ,且 ,则称函数 在区间 上有零点。
思考7.试求出函数 的正零点(精确到0.1)。
3.二分法:对于在区间 上不间断,且 0的函数 ,通过不断把零点所在的区间 ,使区间的两个端点 ,进而得到零点 的方法。

三、典例欣赏:
例1.求证:二次函数 有两个不同的零点.

变题1:求证:函数 在区间 上存在零点.


变题2:判断函数 在区间 上是否存在零点.


变题3:求证:无论a取什么实数,二次函数 都有两个零点 ,并求出 最小时的二次函数的解析式。


例2.如图:这是一个二次函数 的图象:(1)写出这个二次函数的零点;(2)写出这个二次函数的解析式;(3)分别比较 , 与0的大小关系。


例3.证明方程 在区间 内有惟一一个实数根,并求出这个实数根(精确到0.1)。



【针对训练】 班级 姓名 学号
1.二次函数 的图象交x轴于A、B两点,交y轴于C点,则三角形ABC的面积为____________________.
2.一次函数 与二次函数 的图象交点个数为____________.
3.抛物线 与x轴有两个交点,则m的取值范围是______________.
4.若二次函数 满足 ,且 有两实根 , 则 _ .
5. 与x轴无交点,则一次函数 的图象不经过第_____象限.
6.已知函数 在区间 上的最小值为2,则该函数的零点个数有 个。
7.用二分法求方程 在区间[1,3]内的实根,取区间中点 ,那么下一个有根区间是 (2,3)
8.用二分法研究函数 的零点时,若第一次经计算得 ,(其中 ),可以得到其中一个零点 ,第二次应计算
9.证明:(1)函数 有两个不同的零点;
(2)函数 在区间 上有零点。


10.已知抛物线 与x轴有两个不同的交点,(1)求m的取值范围;
(2)抛物线与x轴相交于点A,B,且B点的坐标为(3,0)求出A点的坐标,抛物线的对称轴和顶点坐标。


11.已知二次函数 ,其中 为实数。
(1)证明对任意实数 ,这个二次函数必有两个零点;
(2)若两个零点分别为 ,且 的倒数和为 ,求这个二次函数的解析式。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaoyi/73337.html

相关阅读:函数概念的应用

闁绘鐗婂ḿ鍫熺珶閻楀牊顫栭柨娑欑濠€浼村棘閸パ冩暥閻庣懓婀遍弫杈ㄧ閹烘洑绮撶紓鍐╁灩閺併倝骞嬮悿顖氭闁告瑦鍨肩涵鈧柣姘煎櫙缁辨繄鎷犻妷锔界€悷娆忓€婚崑锝嗙閸涱剙鏁╅悶娑栧妺缂嶆棃鎳撻崨顔芥嫳濞存粍浜介埀顒€鍊瑰﹢鎵博濞嗗海鐭岄柟缁樺姃缁跺灚绌遍埄鍐х礀閻庢稒锚閸嬪秶绮氬ú顏咃紵闁哄牆绉存慨鐔兼晬鐏炶偐鐟濋柟鏋劜濠€渚€骞嶉埀顒勫嫉婢跺缍€闁挎稑濂旂粭澶愬箥閹稿骸顎撻柣鈺兦归崣褍鈻旈弴鐐典紣閻犳劧绲奸幑銏ゅΥ閸屾凹娲ら柛娆愬灩楠炲洭寮甸鍌滃讲闁哄牆顦扮粔鍦偓姘湰婵¤京鎮婵嬫殔闁哄鎷�/閺夆晜绻冪涵鑸垫交濠靛⿴娼愰柣銊ュ閸炲鈧湱娅㈢槐婵堟嫚瀹勬澘绲洪梺顐$窔閸嬫牗绂掗幆鏉挎 4509422@qq.com 濞戞挾鍋撴慨銈夋晬鐏炶偐顏辩紓浣哥箲閻擄紕鈧湱鍎戠槐婵嬪嫉椤掑倻褰查悘蹇撴閻濇盯宕氱拠鎻掔仼闂傚嫨鍊戦埀顒婃嫹