高中化学是一门非常有趣的学科,有很多都是贴近生活的。在生活中的应用是非常的广泛的。下面逍遥右脑小编整理了高中化学解题技巧总结,希望对你有帮助。
高中化学解题技巧一关系式法关系式法是根据化学方程式计算的巧用,其解题的核心思想是化学反应中质量守恒,各反应物与生成物之间存在着最基本的比例(数量)关系。
高中化学解题技巧二方程或方程组法根据质量守恒和比例关系,依据题设条件设立未知数,列方程或方程组求解,是化学计算中最常用的方法,其解题技能也是最重要的计算技能。
高中化学解题技巧三守恒法化学方程式既然能够表示出反应物与生成物之间物质的量、质量、气体体积之间的数量关系,那么就必然能反映出化学反应前后原子个数、电荷数、得失电子数、总质量等都是守恒的。巧用守恒规律,常能简化解题步骤、准确快速将题解出,收到事半功倍的效果。
高中化学解题技巧四差量法找出化学反应前后某种差量和造成这种差量的实质及其关系,列出比例式求解的方法,即为差量法。其差量可以是质量差、气体体积差、压强差等。 差量法的实质是根据化学方程式计算的巧用。它最大的优点是:只要找出差量,就可求出各反应物消耗的量或各生成物生成的量。
高中化学解题技巧五平均值法平均值法是巧解方法,它也是一种重要的解题思维和解题 六、极值法 巧用数学极限知识进行化学计算的方法,即为极值法。
高中化学解题技巧六十字交叉法若用A、B分别表示二元混合物两种组分的量,混合物总量为A+B(例如mol)。 若用xa、xb分别表示两组分的特性数量(例如分子量),x表示混合物的特性数量(例如平均分子量)则有: 十字交叉法是二元混合物(或组成)计算中的一种特殊方法,它由二元一次方程计算演变而成。若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用十字交叉法计算。 使用十字交叉法的关键是必须符合二元一次方程关系。它多用于哪些计算? 明确运用十字交叉法计算的条件是能列出二元一次方程的,特别要注意避免不明化学涵义而滥用。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/1133538.html
相关阅读:2018高一年级化学必修一教案