对于高中数学的学习,聪明的智慧是一方面,另一方面的归纳和总结也是有效的方式之一。下文逍遥右脑小编就给即将高考的你归纳总结了高考数学必考的几种大题题型,请考生们抓紧查阅吧!
高考数学必考五大题型一、排列组合题型
二、立体几何题型
三、数列问题题型
四、导数应用题型
五、解析几何题型(圆锥曲线)
高考数学立体几何题答题技巧1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
高考数学大题解析几何剖析1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。
2、用代数规则对代数化后的问题进行处理。
高考解析几何解题套路及各步骤操作规则
步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(翻译);
口诀:见点化点、见直线化直线、见曲线化曲线。
1、见点化点:点用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;
2、见直线化直线:直线用二元一次方程表示,只要是题目中提到的直线都要加以方程化;
3、见曲线化曲线:曲线(圆、椭圆、抛物线、双曲线)用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;
步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。
口诀:点代入直线、点代入曲线。
1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;
2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;
这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。
在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。
以上《高考数学大题题型归纳 高考数学必考五大题型》由逍遥右脑整理发布,更多高考经验及最新高考资讯请持续关注逍遥右脑!
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/1243197.html
相关阅读:增进数学课堂气氛的几点做法