如何做好数学概念的教学工作

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网

数学概念是数学教材结构的最基本的因素,正确理解数学概念,是掌握数学基础知识的前提.学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题.因此,抓好数学概念的教学,是提高数学教学质量的关键.

数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的.况且有的教师在教学过程中,不注意结合学生心理发展特点去分析事物的本质特征,只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确地理解、记忆和应用.下面就如何做好数学概念的教学工作谈几点体会.

1.运用具体实物或模型,形象地讲述新概念

概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识.教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径.所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征.例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识.这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻.

2.利用学生原有的概念,帮助学生理解新概念

教学中许多新的数学概念,都可以从学生原有的概念中导出.例如,在学生已经学了平行四边形概念的基础上引入矩形、菱形的概念,就不必再从实物、实例引入,学生原有的平行四边形概念(种概念)与新概念(属概念)的联系十分紧密,教师只需抓住它们的本质作简要说明,就可以使学生建立起新的概念,在此基础上通过讲解例题便可以使新概念获得巩固.

3.利用概念中的关键字、词,帮助学生掌握概念

数学概念中的某些字、词的含义,为我们提供了记忆概念本质属性的直观材料,强调概念中具有这种特征的字和词,能有效地理解和记忆概念的本质特征.例如,“一元二次方程”这个概念本身具有“一元”、“二次”、“方程”3个关键词,抓住这3个特征,学生自然也就掌握了这个概念.又如三角形的内切圆、外接圆中的“内”、“外”分别指出了圆在三角形内部、外部;“切”、“接”分别指出了圆与三角形的3条边相切,圆与三角形的3个顶点相接.教学中着重强调这些字词,使学生一看到这一概念,就会联想到这一概念是如何定义的.

4.合理运用变式突出概念的本质特征,使学生准确理解概念

“变式”是指从不同角度、方面和方式变换事物呈现的形式,以便揭示其本质属性.例如,在讲解初二几何中三角形的高这一概念时,就可运用变式提供给学生各种典型的直观材料,或者不断变换高所呈现的形式,通过不同的形式反映其本质属性.通过多种形式的变换,三角形各边的高是“对角的顶点向这边作垂线”这一本质属性就被正确地揭示出来了,这样能使学生获得的概念更精确.在几何概念的教学中,课本中表示概念的图形往往是常规的,如不考虑变式,学生的辨图识图能力将受到限制,表现为扩大或缩小概念的处延.通过变式,可使图形的本质属性保持恒在,非本质特征得到变异,有利于学生对事物的本质特征的把握.

5.通过比较,使学生正确地理解概念

如果说变式是从材料方面促进学生的理解,比较则是从方法方面促进学生的理解.对于一些容易混淆的概念,通过比较可以了解它们之间的区别与联系,使其本质特征更清晰例如,在讲解梯形的概念时,可要求学生比较梯形与平行四边形两种图形的相同点和不同点.学生通过比较和总结不难得出,两种图形的相同点是:它们都是四边形,都至少有一组对边平行;不同点是:平行四边形的两组对边分别都平行,而梯形只有一组对边平行,另一组对边不平行.通过比较这两个概念的异同点,学生很容易抓住它们的本质属性,促进对概念的理解和记忆.

6.在应用中加深对概念的理解,培养学生的数学能力对数学概念的深刻理解,是提高学生的解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻.

总之,数学概念的教学是整个数学教学的一个重要环节,正确地理解数学概念是掌握数学知识的前提.教师只有把数学概念讲清楚、讲准确,让学生深刻理解概念的内涵,准确掌握概念的外延,才能使学生从根本上提高分析问题和解决问题的能力.


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/1332924.html

相关阅读:数学教学故事