对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳。
一、点关于已知点或已知直线对称点问题
1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),
x′=2a-x
由中点坐标公式可得:y′=2b-y
2、点P(x,y)关于直线L:Ax+By+C=O的对称点为
x′=x-(Ax+By+C)
P′(x′,y′)则
y′=y-(AX+BY+C)
事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C
解此方程组可得结论。
(- )=-1(B≠0)
特别地,点P(x,y)关于
1、x轴和y轴的对称点分别为(x,-y)和(-x,y)
2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)
3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)
例1 光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点
A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0
`C(0, )
`直线BC的方程为:5x-6y+25=0
二、曲线关于已知点或已知直线的对称曲线问题
求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。
1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0
2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特别地,曲线F(x,y)=0关于
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/133472.html
相关阅读:高中数学学习指导:立体几何学习中的图形观