1.3.2 球的体积和表面积(教学设计)

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


一、教学目标

 

知识与技能

 

⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割――求和――化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

 

⑵能运用球的面积和体积公式灵活解决实际问题。

 

⑶培养学生的空间思维能力和空间想象能力。

 

过程与方法

 

通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=πR3和面积公式S=4πR2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。

 

情感与价值观

 

通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。

 

二、教学重点、难点

 

重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

 

难点:推导体积和面积公式中空间想象能力的形成。

 

三、学法和教学用具

 

学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值    的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。

 

教学用具:投影仪

 

四、教学设计

 

创设情景

 

⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。

 

⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。

 

探究新知

 

1.球的体积:

 

如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割――求和――化为准确和”的方法来进行。

 

步骤:

 

第一步:分割

 

如图:把半球的垂直于底面的半径OA作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。

 

如图: 

 

 

 

 

 

 

 

第二步:求和

 

 

第三步:化为准确的和

 

当n→∞时, →0  (同学们讨论得出)

 

所以  

 

得到定理:半径是R的球的体积

 

练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3)

 

2.球的表面积:

 

球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。

 

思考:推导过程是以什么量作为等量变换的?

 

半径为R的球的表面积为    S=4πR2

 

练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是           。 (答案50元)

 

典例分析

 

课本P47 例4和P29例5

 

巩固深化、反馈矫正

 

⑴正方形的内切球和外接球的体积的比为           ,表面积比为           。

 

                                             (答案:  ; 3 :1)

 

⑵在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400πcm2,求球的表面积。  (答案:2500πcm2)

 

分析:可画出球的轴截面,利用球的截面性质求球的半径

                                                       

 

课堂小结

 

本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。

 

评价设计

 

作业  P30  练习1、3  ,B(1)


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/135695.html

相关阅读:高考数学从90分提升至135分的超强秘诀