【摘要】您好,这里是高中数学学习栏目,数学是培养逻辑思维能力,分析能力的重要学科,所以小编在此为您编辑了此文:高中数学学习:高考数学解题中的通性通法”以方便您的学习,希望能给您带来帮助。
本文题目:高中数学学习:高考数学解题中的通性通法
对于中学阶段用于解答数学问题的方法,可将其分为三类:
(1)具有创立学科功能的方法.如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等.在具体的解题中,具有统帅全局的作用.
(2)体现一般思维规律的方法.如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等.在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求.
(3)具体进行论证演算的方法.这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等.
我们知道,数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想.数学是关于模式的科学,这反映了在数学解题时,需要进行“模式识别”,需要构建标准的模型.往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法.数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂问题简单化.数学解题就是一系列连续的化归与转化,将复杂问题简单化、陌生问题熟悉化,其消元、减少参变元的个数是常用的方法.在代数式的变形中,则往往要分离出非负的量,配方技术是经常使用且很奏效的方法.
数形转换、待定系数、变量代换、消元、配方法等是中学数学解题的通性通法.把几何的直观推理、代数的有序推理、解题的通性通法与具体的案例结合起来,整体把握数学解题的通性通法,抓住通性通法的本质,科学有效地实施解题分析、解题思维链的形成、解题后的反思与优化,从而通过有限问题的训练来获得解答无限问题的解题智慧.
【总结】2013年为小编在此为您收集了此文章“高中数学学习:高考数学解题中的通性通法”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在学习愉快!
更多精彩内容请点击: > >
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/155978.html
相关阅读:高中数学学习方法:文科生该如何攻克高考数学堡垒
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 4509422@qq.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�