2.2.2-3 直线与圆、圆与圆的位置关系

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


重难点:掌握直线与圆、圆与圆的位置关系的几何图形及其判断方法,能用坐标法判直线与圆、圆与圆的位置关系.

经典例题:已知圆C1:x2+y2=1和圆C2:(x-1)2+y2=16,动圆C与圆C1外切,与圆C2内切,求动圆C的圆心轨迹方程.

 

 

 

 

当堂练习:

1.已知直线和圆 有两个交点,则的取值范围是(    )

  A.       B.       C.        D.

2.圆x2+y2-2acosx-2bsiny-a2sin=0在x轴上截得的弦长是(    )

  A.2a               B.2|a|             C.|a|          D.4|a|

3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是(    )

  A.x+y-3=0           B.x-y-3=0      C.x+4y-3=0           D.x-4y-3=0

4.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为(    )

  A.1或-1          B.2或-2           C.1            D.-1

5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为(   )

A.17或-23         B.23或-17         C.7或-13        D.-7或13

6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于(    )

  A.-3+2         B.-3+           C.-3-2        D.3-2

7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是(    )

  A. 相切           B. 相交          C. 相离          D.内含

8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是(    )

  A.x+y=0          B.x+y-2=0          C.x-y-2=0             D.x-y+2=01.

9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是(    )

A.           B.2           C.1           D.

10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是(    )

  A.相交           B.外切          C.内切         D.相交或外切

11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是(    )

  A.(x-4)2+(y+5)2=1     B.(x-4)2+(y-5)2=1    C.(x+4)2+(y+5)2=1       D.(x+4)2+(y-5)2=1

12.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a的值为(    )

  A.0              B.1              C. 2          D.2

13.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:

f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是(    )

A.与圆C1重合                            B. 与圆C1同心圆 

C.过P1且与圆C1同心相同的圆             D. 过P2且与圆C1同心相同的圆

14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.

15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.

16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.

17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.

18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(mR),

证明直线与圆相交;   (2) 求直线被圆C截得的弦长最小时,求直线的方程.

 

 

 

 

 

19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.

 

 

 

 

 

20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.

 

 

 

 

 

21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.

 

 

参考答案:

 

经典例题:

解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);

两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切      ∴|CC1|=r+r1,

又∵圆C与圆C2内切, ∴|CC2|=r2-r    (由题意r2>r),∴|CC1|+|CC2|=r1+r2,

即 ,?化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.

当堂练习:

1.D; 2.B; 3.A; 4.D; 5.D; 6.A; 7.B; 8.D; 9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;

18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,

 直线过定点A(3,1), (3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.

(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.

19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,

整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7=0

圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.

20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,

由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1.  又因为P(a,b)到直线x-2y=0的距离为,

所以d==,即|a-2b|=1,    解得a-2b=1,

由此得,

于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.

21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),

 故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,

由,  所求圆的方程为x2+y2+2x-10y+21=0.

 


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/183324.html

相关阅读:高考数学应试技巧、方法谈