高中数学基础知识

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


【摘要】鉴于大家对高中频道十分关注,小编在此为大家搜集整理了此文“高中数学基础知识”,供大家参考!

高中数学基础知识

一、集合与简易逻辑

1.集合的元素具有无序性和互异性.和确定性。

2.对集合,时,你是否注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.

3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为

4.“交的补等于补的并,即”;“并的补等于补的交,即”.

5.判断命题的真假

关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” (.

8.充要条件

二、函 数

1.指数式、对数式,

,,,,.

,,,,,

,..

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.

(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).

注意:①,,,

但.

②(函数的反函数是,而不是.

3.单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.

注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称(.确定函数奇偶性的常用方法有:定义法、图像法等等.

对于偶函数而言有:.

(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充分条件.

(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)函数单调是函数有反函数的一个充分非必要条件.

(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.

(6)函数单调是函数有反函数的充分非必要条件,奇函数可能反函数,但偶函数只有有反函数;既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数与函数的图像关于直线(轴)对称.

推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.

推广二:函数,的图像关于直线(由确定)对称.

(2)函数与函数的图像关于直线(轴)对称.

推广:函数与函数的图像关于直线对称(由“和的一半确定”).

(3)函数与函数的图像关于坐标原点中心对称.

推广:函数与函数的图像关于点中心对称.

(4)函数与函数的图像关于直线对称.

推广:曲线关于直线的对称曲线是;

曲线关于直线的对称曲线是.

如果是R上的周期函数,且一个周期为,那么.

特别:若恒成立,则.

若恒成立,则.若恒成立,则.

如果是周期函数,那么的定义域“无界”.

5.图像变换

(1)函数的图像按向量平移后,得函数的图像.

(2)函数图像的平移、伸缩变换中,图像的特殊点、特殊线也作相应的变换.

(3)图像变换应重视将所研究函数与常见函数(正比例函数、反比例函数、一次函数、二次函数、对数函数、指数函数、三角函数、“鱼钩函数”及函数等)相互转化.

注意:①形如的函数,不一定是二次函数.

②形如的图像是等轴双曲线,双曲线两渐近线分别直线(由分母为零确定)、直线(由分子、分母中的系数确定),双曲线的中心是点.(

三、数  列

1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系:(必要时请分类讨论).

注意:;.

2.等差数列中:

(1)等差数列公差的取值与等差数列的单调性.

(2);.

(3)、也成等差数列. (4)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5)仍成等差数列.

(6),,,

,.

(7);;.

(8)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2); .

(3) 、、成等比数列;成等比数列成等比数列.

(4)两等比数列对应项积(商)组成的新数列仍成等比数列.

(5)成等比数列.

(6).

特别:.

(7) .

(8)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(10)并非任何两数总有等比中项. 仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.

(2)如果数列成等比数列,那么数列必成等差数列.

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),

③,,

,.

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

①, ②,③,

④ ,⑤,

⑥,

⑦,⑧.

特别声明:(运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.

四、三角函数

1.终边与终边相同(的终边在终边所在射线上).

终边与终边共线(的终边在终边所在直线上).

终边与终边关于轴对称.

终边与终边关于轴对称.

终边与终边关于原点对称.

一般地:终边与终边关于角的终边对称.

与的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式:,扇形面积公式:,1弧度(1rad).

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意:,

,.

4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系.为锐角.

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

如, ,

,等.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化). 解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

【总结】2013年已经到来,小编在此特意收集了有关此频道的文章供读者阅读。

更多频道:


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/195812.html

相关阅读:高考数学易错、易混考点