简谐运动的十个“不一定”

编辑: 逍遥路 关键词: 高中物理 来源: 高中学习网


    简谐运动是最简单、最基本的机械振动,是物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动。简谐运动也是高中物理部分的重点知识之一。弄清简谐运动的规律对进一步学习机械波、交流电、电磁波等具有非常重要的意义。笔者针对怎样理解简谐运动的特点和规律提出以下十个“不一定”。
  
  一、物体运动的路线不一定都是直线
  
  例如,单摆摆球做简谐运动时的运动路线是在摆球平衡位置两侧并通过平衡位置的一段圆弧,即摆球的运动路线为曲线。
  
  二、物体运动的速度方向与位移方向不一定相同
  
  简谐运动的位移指的是振动物体偏离平衡位置的位移,位移的起点总是在平衡位置,那么当物体远离平衡位置时位移方向与速度方向相同,靠近平衡位置时位移方向与速度方向相反。
  
  三、振动物体所受的回复力方向与物体所受的合力方向不一定相同
  
  例如,单摆在平衡位置附近(小角度范围内)的摆动既做圆周运动,又做简谐运动,摆球所受到的各个力的合力既要提供其做圆周运动的向心力,又要提供其做简谐运动的回复力,即单摆振动过程中摆球受到所有力的合力的一个分力提供向心力,另一个分力提供回复力。那么回复力方向就与摆球所受到的各力的合力方向不相同。
  
  四、物体在平衡位置不一定处于平衡状态
  
  例如,单摆摆球做简谐运动经过平衡位置时,由于摆球的平衡位置在圆弧上,摆球在圆弧上做圆周运动需要向心力,故摆球在平衡位置处悬绳的拉力大于摆球的重力,即摆球在平衡位置并非处于平衡状态。
  
  五、物体在四分之一周期内通过的路程不一定等于振幅
  
  做简谐运动的物体在一个运动周期的时间内通过的路程是振幅的4倍,在半个周期的时间内通过的路程是振幅的2倍,但是在四分之一周期时间内通过的路程就不一定等于振幅。虽然当物体从平衡位置向最大位移运动四分之一周期时间或从最大位移向平衡位置运动四分之一周期时间,物体通过的路程都等于振幅,但是当物体从平衡位置和最大位移之间的某一位置开始运动四分之一周期时间通过的路程就不等于振幅了。因为做简谐运动的物体在平衡位置附近速度比在最大位移附近速度大,放物体从平衡位置和最大位移之间的某一位置向平衡位置方向运动并通过平衡位置的四分之一周期时间内通过的路程就大于振幅,而向最大位移方向运动并返回的四分之一周期时间内通过的路程就小于振幅。
  
  六、简谐运动的振动快时物体的运动不一定快
  
  简谐运动的振动快慢由振动周期或频率反映,周期小振动快,周期大振动慢;而做简谐运动的物体运动快慢则由物体运动的瞬时速度反映,在某时刻瞬时速度大则运动快,反之则运动慢。同时简谐运动的振动快慢是由振动系统的本身决定的,而做简谐运动物体的运动快慢则由振动物体的位置和储存在振动系统中的能量决定。所以简谐运动振动快,物体在某时刻的运动不一定快。
  
  七、单摆的摆长短,周期不一定小
  
  单摆振动的周期不但与摆长有关,而且还与单摆所在处重力加速度一定时摆球悬点的加速度有关,当摆球是点的加速度为零时,摆长越短,周期就越小。那么当把摆长较短的单摆放在加速下降的升降机中时,由于单摆处于失重状态,故单摆振动的周期也可以比放在地面上悬点加速度为零的摆长较长的单摆振动周期大,当单摆处于完全失重状态时,单摆振动周期为无穷大,单摆处于停振状态。
  
  八、单摆摆球处在平衡位置时摆线不一定在竖直方向
  
  单摆摆球的平衡位置处在悬点正下方的条件是摆球悬点的加速度为零或有加速度但加速度在竖直方向,否则摆球的平衡位置就不在摆球悬点的正下方。例如,单摆悬挂在水平方向加速运动的小车中,摆球处在平衡位置时,悬线就不在竖直方向,且小车的加速度越大,摆球在平衡位置时悬线与竖直方向的夹角也越大。
  
  九、物体每次通过同一位置时,同一物理量不一定相同
  
  由于简谐运动具有周期性,故描述物体运动状态的物理量以及所受的回复力都在随时间做周期性变化,这样物体每次通过运动路线上的同一位置时,同一物理量也就不一定相同。其中通过同一位置时相同的物理量是位移、动能、回复力、以及回复力产生的加速度,而速度、动量这两个物理量在物体连续通过同一位置时就不相同,这是因为速度、动量是矢量,其方向与运动方向相同,而物体连续通过同一位直时运动方向是相反的,所以物体每次通过同一位置时,同一物理量不一定相同。
  
  十、运动物体在半个周期内回复力做功一定为零,但回复力的冲量不一定为零
  
  做简谐运动的物体在任意半个周期的前后瞬间,其速度大小一定相同,速度方向可能是相同的,也可能是相反的。故由动能定理和动量定理知,物体在半个周期内回复力做功一定为零,回复力的冲量不一定为零。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/275964.html

相关阅读:谈物理情景中隐含条件的挖掘